Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98268 by mr W last updated on 16/Jun/20

let p(x) be a polynomial function of  (n−1)^(th)  degree and  p(k)=k for k=1,2,3,...,n  find p(0) and p(n+1).  example: n=10

letp(x)beapolynomialfunctionof(n1)thdegreeandp(k)=kfork=1,2,3,...,nfindp(0)andp(n+1).example:n=10

Commented by MJS last updated on 13/Jun/20

I think this is impossible for degree n−1.  for n^(th)  degree we have  p(x)=x+Π_(i=1) ^n (x−i)  p(0)=(−1)^n n!  p(n+1)=n!+n+1

Ithinkthisisimpossiblefordegreen1.fornthdegreewehavep(x)=x+ni=1(xi)p(0)=(1)nn!p(n+1)=n!+n+1

Commented by mr W last updated on 13/Jun/20

thanks sir!  for (n−1)^(th)  degree we have n eqn.  for n coefficients, so the function  should be unique. can you explain  why this is not possible?  for n^(th)  degree, the function   p(x)=x+Π_(i=1) ^n (x−i)  fulfills all conditions, but it is not  unique, i think.

thankssir!for(n1)thdegreewehaveneqn.forncoefficients,sothefunctionshouldbeunique.canyouexplainwhythisisnotpossible?fornthdegree,thefunctionp(x)=x+ni=1(xi)fulfillsallconditions,butitisnotunique,ithink.

Commented by MJS last updated on 13/Jun/20

n=3  ax^2 +bx+c=y  x=y=1: a+b+c=1  x=y=2: 4a+2b+c=2  x=y=3: 9a+3b+c=3  solving leads to a=c=0∧b=1  p(x)=x  for n=4  ax^3 +bx^2 +cx+d=y  ...  a=b=d=0∧c=1 ⇒ p(x)=x  ...

n=3ax2+bx+c=yx=y=1:a+b+c=1x=y=2:4a+2b+c=2x=y=3:9a+3b+c=3solvingleadstoa=c=0b=1p(x)=xforn=4ax3+bx2+cx+d=y...a=b=d=0c=1p(x)=x...

Commented by mr W last updated on 13/Jun/20

now clear sir, thanks!  all points (k,k) with k=1..n lie on  the line y=x, so p(x)=x is indeed  always a suitable polynomial for  the solution.  what do you think? if p(k)=(−1)^(k+1) k,  does the (n−1)^(th)  degree polynomial  function exist?

nowclearsir,thanks!allpoints(k,k)withk=1..nlieontheliney=x,sop(x)=xisindeedalwaysasuitablepolynomialforthesolution.whatdoyouthink?ifp(k)=(1)k+1k,doesthe(n1)thdegreepolynomialfunctionexist?

Commented by MJS last updated on 14/Jun/20

the function does exist.  p_1 (x)=1  p_2 (x)=−3x+4  p_3 (x)=4x^2 −15x+12  p_4 (x)=−((10)/3)x^3 +24x^2 −((155)/3)x+32  p_5 (x)=2x^4 −((70)/3)x+94x^2 −((455)/3)x+80  p_6 (x)=−((14)/(15))x^5 +16x^4 −((308)/3)x^3 +304x^2 −((2037)/5)x+192  p_7 (x)=((16)/(45))x^6 −((42)/5)x^5 +((704)/9)x^4 −364x^3 +((39664)/(45))x^2 −((5173)/5)x+448  the sequence of p_n (0) is  a_n =⟨1, 4, 12, 32, 80, 192, 448, ...⟩  a_1 =1  a_2 =a_1 ×4  a_3 =a_2 ×4×((2^2 −1)/2^2 )  a_4 =a_3 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )  a_5 =a_4 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )×((4^2 −1)/4^2 )  ...  I seem to be unable to find a_n  in terms of n  the sequence of p_n (n+1) is  b_n =⟨1, −5, 16, −43, 106, −249, 568, ...⟩  no idea to this...

thefunctiondoesexist.p1(x)=1p2(x)=3x+4p3(x)=4x215x+12p4(x)=103x3+24x21553x+32p5(x)=2x4703x+94x24553x+80p6(x)=1415x5+16x43083x3+304x220375x+192p7(x)=1645x6425x5+7049x4364x3+3966445x251735x+448thesequenceofpn(0)isan=1,4,12,32,80,192,448,...a1=1a2=a1×4a3=a2×4×22122a4=a3×4×22122×32132a5=a4×4×22122×32132×42142...Iseemtobeunabletofindanintermsofnthesequenceofpn(n+1)isbn=1,5,16,43,106,249,568,...noideatothis...

Commented by mr W last updated on 14/Jun/20

thanks very much sir!  is following the right path to solve?  say p_n (x)=Σ_(k=0) ^(n−1) c_(n,k) x^k   p_n (r)=Σ_(k=0) ^(n−1) c_(n,k) r^k =(−1)^(r+1) r   [(1,1,1,(...),1),(1,2,2^2 ,(...),2^(n−1) ),(1,3,3^2 ,(...),3^(n−1) ),((...),(...),(...),(...),(...)),(1,n,n^2 ,(...),n^(n−1) ) ] ((c_(n,0) ),(c_(n,1) ),(c_(n,2) ),((...)),(c_(n,n−1) ) )= ((1),((−2)),(3),((...)),(((−1)^(n+1) n)) )  ⇒ ((c_(n,0) ),(c_(n,1) ),(c_(n,2) ),((...)),(c_(n,n−1) ) )= [(1,1,1,(...),1),(1,2,2^2 ,(...),2^(n−1) ),(1,3,3^2 ,(...),3^(n−1) ),((...),(...),(...),(...),(...)),(1,n,n^2 ,(...),n^(n−1) ) ]^(−1)  ((1),((−2)),(3),((...)),(((−1)^(n+1) n)) )

thanksverymuchsir!isfollowingtherightpathtosolve?saypn(x)=n1k=0cn,kxkpn(r)=n1k=0cn,krk=(1)r+1r[111...11222...2n11332...3n1...............1nn2...nn1](cn,0cn,1cn,2...cn,n1)=(123...(1)n+1n)(cn,0cn,1cn,2...cn,n1)=[111...11222...2n11332...3n1...............1nn2...nn1]1(123...(1)n+1n)

Commented by MJS last updated on 15/Jun/20

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com