Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98271 by Ar Brandon last updated on 12/Jun/20

GivenU_n =∫_0 ^1 x^n (√(1−x))dx  n∈N, show that  U_n =((2^(n+2) n!(n+1))/((2n+3)!))

$$\mathcal{G}\mathrm{ivenU}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}−\mathrm{x}}\mathrm{dx}\:\:\mathrm{n}\in\mathbb{N},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{2}^{\mathrm{n}+\mathrm{2}} \mathrm{n}!\left(\mathrm{n}+\mathrm{1}\right)}{\left(\mathrm{2n}+\mathrm{3}\right)!} \\ $$

Commented by Ar Brandon last updated on 12/Jun/20

Thanks �� But, it really isn't clear to me. Any explanations please ?��

Commented by PRITHWISH SEN 2 last updated on 12/Jun/20

then U_n = ((2n)/(2n+3)).((2(n−1))/(2n+1))......(4/7).(2/5).(2/3)         =((2^n {n(n−1)(n−2)(n−3)......2.1}.2)/((2n+3)(2n+1).........7.5.3))        = ((2^(n+1) .n!)/((2n+3)!)) ×2^(n+1) {(n+1)n(n−1)........2.1}     = ((2^(2n+2) n!(n+1)!)/((2n+3)!)) I got this please check

$$\mathrm{then}\:\mathrm{U}_{\mathrm{n}} =\:\frac{\mathrm{2n}}{\mathrm{2n}+\mathrm{3}}.\frac{\mathrm{2}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2n}+\mathrm{1}}......\frac{\mathrm{4}}{\mathrm{7}}.\frac{\mathrm{2}}{\mathrm{5}}.\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{2}^{\mathrm{n}} \left\{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)\left(\mathrm{n}−\mathrm{3}\right)......\mathrm{2}.\mathrm{1}\right\}.\mathrm{2}}{\left(\mathrm{2n}+\mathrm{3}\right)\left(\mathrm{2n}+\mathrm{1}\right).........\mathrm{7}.\mathrm{5}.\mathrm{3}} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{2}^{\mathrm{n}+\mathrm{1}} .\mathrm{n}!}{\left(\mathrm{2n}+\mathrm{3}\right)!}\:×\mathrm{2}^{\mathrm{n}+\mathrm{1}} \left\{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)........\mathrm{2}.\mathrm{1}\right\} \\ $$$$\:\:\:=\:\frac{\mathrm{2}^{\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{2}} \boldsymbol{\mathrm{n}}!\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)!}{\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{3}\right)!}\:\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{got}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$

Commented by Ar Brandon last updated on 12/Jun/20

I′m stucked here. Can anyone help me out, please?

$$\mathrm{I}'\mathrm{m}\:\mathrm{stucked}\:\mathrm{here}.\:\mathrm{Can}\:\mathrm{anyone}\:\mathrm{help}\:\mathrm{me}\:\mathrm{out},\:\mathrm{please}? \\ $$

Commented by Ar Brandon last updated on 12/Jun/20

Commented by PRITHWISH SEN 2 last updated on 20/Jul/20

I did not do anything I just expanded your expression  U_n =((2n)/(2n+3))U_(n−1)      then U_(n−1) = ((2(n−1))/(2(n−1)+3)) U_(n−2)   ⇒U_(n−1) = ((2(n−1))/(2n+1))U_(n−2)   and likewise you can get  by putting n= n−2,n−3 and so on  now for U_1 =(2/5)U_0   andU_0  = ∫_0 ^1 x^0 (√(1−x))dx=(2/3)  I think now it makes sense

$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{do}\:\mathrm{anything}\:\mathrm{I}\:\mathrm{just}\:\mathrm{expanded}\:\mathrm{your}\:\mathrm{expression} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{2n}}{\mathrm{2n}+\mathrm{3}}\mathrm{U}_{\mathrm{n}−\mathrm{1}} \:\:\:\:\:\mathrm{then}\:\mathrm{U}_{\mathrm{n}−\mathrm{1}} =\:\frac{\mathrm{2}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{n}−\mathrm{1}\right)+\mathrm{3}}\:\mathrm{U}_{\mathrm{n}−\mathrm{2}} \\ $$$$\Rightarrow\mathrm{U}_{\mathrm{n}−\mathrm{1}} =\:\frac{\mathrm{2}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2n}+\mathrm{1}}\mathrm{U}_{\mathrm{n}−\mathrm{2}} \:\:\mathrm{and}\:\mathrm{likewise}\:\mathrm{you}\:\mathrm{can}\:\mathrm{get} \\ $$$$\mathrm{by}\:\mathrm{putting}\:\mathrm{n}=\:\mathrm{n}−\mathrm{2},\mathrm{n}−\mathrm{3}\:\mathrm{and}\:\mathrm{so}\:\mathrm{on} \\ $$$$\mathrm{now}\:\mathrm{for}\:\mathrm{U}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{5}}\mathrm{U}_{\mathrm{0}} \:\:\mathrm{andU}_{\mathrm{0}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{0}} \sqrt{\mathrm{1}−\mathrm{x}}\mathrm{dx}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{now}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{sense} \\ $$

Answered by smridha last updated on 12/Jun/20

let x=sin^2 𝛉 so  2∫_0 ^(𝛑/2) sin^((2n+1)) 𝛉cos^2 𝛉d𝛉  =((𝚪(n+1).𝚪((3/2)))/(𝚪(n+(5/2))))=((n!(√𝛑))/((2n+3).𝚪(n+(3/2))))  I think now you can easyly  get your ans.

$$\boldsymbol{{let}}\:\boldsymbol{{x}}=\mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\theta}\:\boldsymbol{{so}} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{sin}}^{\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)} \boldsymbol{\theta{cos}}^{\mathrm{2}} \boldsymbol{\theta{d}\theta} \\ $$$$=\frac{\boldsymbol{\Gamma}\left(\boldsymbol{{n}}+\mathrm{1}\right).\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\boldsymbol{\Gamma}\left(\boldsymbol{{n}}+\frac{\mathrm{5}}{\mathrm{2}}\right)}=\frac{\boldsymbol{{n}}!\sqrt{\boldsymbol{\pi}}}{\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{3}\right).\boldsymbol{\Gamma}\left(\boldsymbol{{n}}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{think}}\:\boldsymbol{{now}}\:\boldsymbol{{you}}\:\boldsymbol{{can}}\:\boldsymbol{{easyly}} \\ $$$$\boldsymbol{{get}}\:\boldsymbol{{your}}\:\boldsymbol{{ans}}. \\ $$

Commented by PRITHWISH SEN 2 last updated on 13/Jun/20

wow! excellent sir.

$$\mathrm{wow}!\:\mathrm{excellent}\:\mathrm{sir}. \\ $$

Commented by smridha last updated on 13/Jun/20

thanks..

$$\boldsymbol{{thanks}}.. \\ $$

Commented by PRITHWISH SEN 2 last updated on 13/Jun/20

welcome

$$\mathrm{welcome} \\ $$

Commented by Ar Brandon last updated on 13/Jun/20

Hum, thank you ��

Answered by Dwaipayan Shikari last updated on 01/Nov/20

∫_0 ^1 x^n (1−x)^(1/2) dx  =∫_0 ^1 x^(n+1−1) x^((3/2)−1) dx  =β(n+1,(3/2))=((Γ(n+1)Γ((3/2)))/(Γ(n+(5/2))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}+\mathrm{1}−\mathrm{1}} {x}^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} {dx} \\ $$$$=\beta\left({n}+\mathrm{1},\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\Gamma\left({n}+\mathrm{1}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com