Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98293 by I want to learn more last updated on 12/Jun/20

Answered by mr W last updated on 12/Jun/20

see Q97675  x+y+z=0  3xyz=18 ⇒xyz=6  7(xy+yz+zx)^2 (xyz)=2058  ⇒xy+yz+zx=±7  x,y,z are roots of  t^3 −7t−6=0  (t+1)(t+2)(t−3)=0  t=−1,−2,3  ⇒x,y,z=−1,−2,3  or  t^3 +7t−6=0  t_1 =((3+(√(9+((7/3))^3 ))))^(1/3) +((3−(√(9+((7/3))^3 ))))^(1/3)   t_(2,3) =complex

seeQ97675x+y+z=03xyz=18xyz=67(xy+yz+zx)2(xyz)=2058xy+yz+zx=±7x,y,zarerootsoft37t6=0(t+1)(t+2)(t3)=0t=1,2,3x,y,z=1,2,3ort3+7t6=0t1=3+9+(73)33+39+(73)33t2,3=complex

Commented by I want to learn more last updated on 12/Jun/20

wow, thanks sir.

wow,thankssir.

Answered by 1549442205 last updated on 13/Jun/20

we have z=−(x+y).Replace into ii)we get  x^3 +y^3 −(x+y)^3 =18⇔x^3 +y^3 −(x^3 +3xy(x+y)+y^3 )=18  ⇔−3xy(x+y)=18⇔3xyz=18⇔xyz=6   Replace into iii)we get x^7 +y^7 −(x+y)^7 =2058(∗)  we have:x^3 +y^3 =(x+y)^3 −3xy(x+y)=−z^3 +3xyz=18−z^3 (1)  x^5 +y^5 =(x+y)^5 −5xy(x^3 +y^3 )−10x^2 y^2 (x+y)  =−z^5 +5xyz^3 −90xy+10x^2 y^2 z=−z^5 +30z^2 −30xy(2)  (x+y)^7 =x^7 +y^7 +7xy(x^5 +y^5 )+21x^2 y^2 (x^3 +y^3 )+35x^3 y^3 (x+y)  =x^7 +y^7 −42z^4 +1260z−210x^2 y^2 −756z+378x^2 y^2 −210x^2 y^2 (3).  Replace into (∗)we get :  42z^4 +42x^2 y^2 −504z=2058⇔z^4 +x^2 y^2 −12z=49  z^4 +((36)/z^2 )−12z−49=0⇔z^6 −12z^3 −49z^2 +36=0  ⇔(z+1)(z+2)(z−3)(z^3 +7z−6)=0  ⇔z∈{−1;−2;3;((^3 (√(81+3(√(1758)))))/3)+((−7^3 (√2))/(^3 (√(162+6(√(1758))))))}  a/for z∈{−1;−2;3}  We get (x;y;z)={(−1;−2;3);(−1;3;−2);(−2;−1;3);(−2;3;−1)  (3;−1;−2);(3;−2;−1)}  b/for z=((^3 (√(81+3(√(1758)))))/3)+((−7^3 (√2))/(^3 (√(162+6(√(1758))))))  x,y are image roots

wehavez=(x+y).Replaceintoii)wegetx3+y3(x+y)3=18x3+y3(x3+3xy(x+y)+y3)=183xy(x+y)=183xyz=18xyz=6Replaceintoiii)wegetx7+y7(x+y)7=2058()wehave:x3+y3=(x+y)33xy(x+y)=z3+3xyz=18z3(1)x5+y5=(x+y)55xy(x3+y3)10x2y2(x+y)=z5+5xyz390xy+10x2y2z=z5+30z230xy(2)(x+y)7=x7+y7+7xy(x5+y5)+21x2y2(x3+y3)+35x3y3(x+y)=x7+y742z4+1260z210x2y2756z+378x2y2210x2y2(3).Replaceinto()weget:42z4+42x2y2504z=2058z4+x2y212z=49z4+36z212z49=0z612z349z2+36=0(z+1)(z+2)(z3)(z3+7z6)=0z{1;2;3;381+317583+7323162+61758}a/forz{1;2;3}Weget(x;y;z)={(1;2;3);(1;3;2);(2;1;3);(2;3;1)(3;1;2);(3;2;1)}b/forz=381+317583+7323162+61758x,yareimageroots

Commented by I want to learn more last updated on 13/Jun/20

Wow, thanks sir

Wow,thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com