All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 98305 by mathmax by abdo last updated on 12/Jun/20
calculate∫0∞ln(x)(1+x)3dx
Answered by maths mind last updated on 13/Jun/20
=∫01ln(t)(1+t)3dt−∫01tln(t)(1+t)3=2∫ln(t)(1+t)3dt−∫01ln(t)(1+t)2=−(−2∫01ln(t)dt(1+t)3+∫01ln(t)dt(1+t)2)=S∫y1ln(t)(a+t)2dt=[−ln(t)a+t]y1+∫y1dtt(a+t)=ln(y)a+y−1a{ln(y)+ln(1+a)−ln(a)}=aln(y)−aln(y)−yln(y)a(a+y)−ln(1+a)a+ln(a)alimy→0∫y1ln(t)(t+a)2dt=1aln(aa+1)=f(a)f′(a)=−ln(aa+1)a2+1a(1a−11+a)S=−(f(1)+f′(1))=−(ln(12)−ln(12)+12)=−12
Commented by abdomathmax last updated on 13/Jun/20
thankyousirmind
Answered by abdomathmax last updated on 14/Jun/20
A=∫0∞ln(x)(1+x)3dx⇒A=∫01ln(x)(1+x)3dx+∫1+∞lnx(1+x)3dx(→x=1t)=∫01lnx(1+x)3dx−∫01−lnt(1+1t)3(−dtt2)=∫01lnx(1+x)3dx−∫01tlnt(1+t)3dt=∫01(1−x)lnx(1+x)3dx=−∫01(x+1−2)lnx(1+x)3)dx=−∫01lnx(1+x)2dx+2∫01lnx(1+x)3dx=ln(2)+2∫01lnx(1+x)3dxbypartsu′=(1+x)−3∫01ln(x)(1+x)3dx=[(12−12(1+x)2)ln(x)]01−∫01(12−12(1+x)2)dxx=−12∫01(x2+2xx(1+x)2)dx=−12∫01x+2(1+x)2dx=−12∫01x+1+1(1+x)2dx=−12∫01dx1+x−12∫01dx(1+x)2=−12ln(2)+12[1x+1]01=−ln(2)2+12(−12)=−ln(2)2−14⇒A=ln(2)+2(−ln22−14)A=−12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com