Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98305 by mathmax by abdo last updated on 12/Jun/20

calculate ∫_0 ^∞  ((ln(x))/((1+x)^3 ))dx

calculate0ln(x)(1+x)3dx

Answered by maths mind last updated on 13/Jun/20

=∫_0 ^1 ((ln(t))/((1+t)^3 ))dt−∫_0 ^1 ((tln(t))/((1+t)^3 ))  =2∫((ln(t))/((1+t)^3 ))dt−∫_0 ^1 ((ln(t))/((1+t)^2 ))=−(−2∫_0 ^1 ((ln(t)dt)/((1+t)^3 ))+∫_0 ^1 ((ln(t)dt)/((1+t)^2 )))=S  ∫_y ^1 ((ln(t))/((a+t)^2 ))dt=[−((ln(t))/(a+t))]_y ^1 +∫_y ^1 (dt/(t(a+t)))  =((ln(y))/(a+y))−(1/a){ln(y)+ln(1+a)−ln(a)}  =((aln(y)−aln(y)−yln(y))/(a(a+y)))−((ln(1+a))/a)+((ln(a))/a)  lim_(y→0)   ∫_y ^1 ((ln(t))/((t+a)^2 ))dt=(1/a)ln((a/(a+1)))=f(a)  f′(a)=−((ln((a/(a+1))))/a^2 )+(1/a)((1/a)−(1/(1+a)))  S=−(f(1)+f′(1))  =−(ln((1/2))−ln((1/2))+(1/2))=−(1/2)

=01ln(t)(1+t)3dt01tln(t)(1+t)3=2ln(t)(1+t)3dt01ln(t)(1+t)2=(201ln(t)dt(1+t)3+01ln(t)dt(1+t)2)=Sy1ln(t)(a+t)2dt=[ln(t)a+t]y1+y1dtt(a+t)=ln(y)a+y1a{ln(y)+ln(1+a)ln(a)}=aln(y)aln(y)yln(y)a(a+y)ln(1+a)a+ln(a)alimy0y1ln(t)(t+a)2dt=1aln(aa+1)=f(a)f(a)=ln(aa+1)a2+1a(1a11+a)S=(f(1)+f(1))=(ln(12)ln(12)+12)=12

Commented by abdomathmax last updated on 13/Jun/20

thank you sir mind

thankyousirmind

Answered by abdomathmax last updated on 14/Jun/20

A =∫_0 ^∞  ((ln(x))/((1+x)^3 ))dx ⇒A=∫_0 ^1  ((ln(x))/((1+x)^3 ))dx   +∫_1 ^(+∞)  ((lnx)/((1+x)^3 ))dx(→x=(1/t))  =∫_0 ^1  ((lnx)/((1+x)^3 ))dx −∫_0 ^1  ((−lnt)/((1+(1/t))^3 ))(−(dt/t^2 ))  =∫_0 ^1  ((lnx)/((1+x)^3 ))dx−∫_0 ^1  ((tlnt)/((1+t)^3 ))dt  =∫_0 ^1  (((1−x)lnx)/((1+x)^3 )) dx =−∫_0 ^1 (((x+1−2)lnx)/((1+x)^3 )))dx  =−∫_0 ^1  ((lnx)/((1+x)^2 ))dx +2 ∫_0 ^1  ((lnx)/((1+x)^3 ))dx  =ln(2)+2 ∫_0 ^1  ((lnx)/((1+x)^3 ))dx  by parts u^′ =(1+x)^(−3)   ∫_0 ^1  ((ln(x))/((1+x)^3 ))dx =[((1/2)−(1/(2(1+x)^2 )))ln(x)]_0 ^1   −∫_0 ^1  ((1/2)−(1/(2(1+x)^2 )))(dx/x)  =−(1/2) ∫_0 ^1 (((x^2  +2x)/(x(1+x)^2 )))dx  =−(1/2) ∫_0 ^1  ((x+2)/((1+x)^2 ))dx  =−(1/2) ∫_0 ^1  ((x+1+1)/((1+x)^2 ))dx  =−(1/2) ∫_0 ^1  (dx/(1+x)) −(1/2) ∫_0 ^1  (dx/((1+x)^2 ))  =−(1/2)ln(2)+(1/2)[(1/(x+1))]_0 ^1  =−((ln(2))/2) +(1/2)(−(1/2))  =−((ln(2))/2)−(1/4) ⇒  A =ln(2)+2(−((ln2)/2)−(1/4))  A=−(1/2)

A=0ln(x)(1+x)3dxA=01ln(x)(1+x)3dx+1+lnx(1+x)3dx(x=1t)=01lnx(1+x)3dx01lnt(1+1t)3(dtt2)=01lnx(1+x)3dx01tlnt(1+t)3dt=01(1x)lnx(1+x)3dx=01(x+12)lnx(1+x)3)dx=01lnx(1+x)2dx+201lnx(1+x)3dx=ln(2)+201lnx(1+x)3dxbypartsu=(1+x)301ln(x)(1+x)3dx=[(1212(1+x)2)ln(x)]0101(1212(1+x)2)dxx=1201(x2+2xx(1+x)2)dx=1201x+2(1+x)2dx=1201x+1+1(1+x)2dx=1201dx1+x1201dx(1+x)2=12ln(2)+12[1x+1]01=ln(2)2+12(12)=ln(2)214A=ln(2)+2(ln2214)A=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com