Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 98325 by bemath last updated on 13/Jun/20

Find the curvature vector and  its magnitude at any point   r^→  = (θ) of the curve r^→ = (acos θ,asin θ,aθ)  .Show the locus of the feet of the  ⊥ from the origin to the tangent   is a curve that completely lies  on the hyperbolic x^2 +y^2 −z^2 = a^2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{curvature}\:\mathrm{vector}\:\mathrm{and} \\ $$$$\mathrm{its}\:\mathrm{magnitude}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point}\: \\ $$$$\overset{\rightarrow} {\mathrm{r}}\:=\:\left(\theta\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\overset{\rightarrow} {\mathrm{r}}=\:\left(\mathrm{acos}\:\theta,\mathrm{asin}\:\theta,\mathrm{a}\theta\right) \\ $$$$.\mathrm{Show}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{the} \\ $$$$\bot\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{the}\:\mathrm{tangent}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{curve}\:\mathrm{that}\:\mathrm{completely}\:\mathrm{lies} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{hyperbolic}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} =\:\mathrm{a}^{\mathrm{2}} \\ $$

Answered by john santu last updated on 13/Jun/20

(dr^→ /dθ) = −asin θ i^�  +acos θ j^� +ak^�   (ds/dθ) = ∣(dr^→ /dθ)∣ = (√2) a  τ^→  = ((dr^→ /dθ)/(ds/dθ)) = (1/((√2) )) (−sin θ i^� +cos θ j^� + k^� )  (dτ^→ /dθ) = (1/(√2)) (−cos θ i^�  −sin θ j^�  )  curvature vector , K^→  = (dτ^→ /ds)   K^→  = ((dτ^→ /dθ)/(ds/dθ)) = (1/(a(√2))) ×(1/(√2)) (−cos θ i^� −sin θ j^� )  = −((cos θ i^� )/(2a)) −((sin θ j^� )/(2a))  magnitude ∣K∣ = (1/(2a)) .

$$\frac{\mathrm{d}\overset{\rightarrow} {\mathrm{r}}}{\mathrm{d}\theta}\:=\:−\mathrm{asin}\:\theta\:\hat {{i}}\:+\mathrm{acos}\:\theta\:\hat {\mathrm{j}}+\mathrm{a}\hat {\mathrm{k}} \\ $$$$\frac{\mathrm{ds}}{\mathrm{d}\theta}\:=\:\mid\frac{\mathrm{d}\overset{\rightarrow} {\mathrm{r}}}{\mathrm{d}\theta}\mid\:=\:\sqrt{\mathrm{2}}\:\mathrm{a} \\ $$$$\overset{\rightarrow} {\tau}\:=\:\frac{\frac{\mathrm{d}\overset{\rightarrow} {\mathrm{r}}}{\mathrm{d}\theta}}{\frac{\mathrm{ds}}{\mathrm{d}\theta}}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\:\left(−\mathrm{sin}\:\theta\:\hat {\mathrm{i}}+\mathrm{cos}\:\theta\:\hat {\mathrm{j}}+\:\hat {\mathrm{k}}\right) \\ $$$$\frac{\mathrm{d}\overset{\rightarrow} {\tau}}{\mathrm{d}\theta}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\left(−\mathrm{cos}\:\theta\:\hat {\mathrm{i}}\:−\mathrm{sin}\:\theta\:\hat {\mathrm{j}}\:\right) \\ $$$$\mathrm{curvature}\:\mathrm{vector}\:,\:\overset{\rightarrow} {\mathrm{K}}\:=\:\frac{\mathrm{d}\overset{\rightarrow} {\tau}}{\mathrm{ds}}\: \\ $$$$\overset{\rightarrow} {\mathrm{K}}\:=\:\frac{\mathrm{d}\overset{\rightarrow} {\tau}/\mathrm{d}\theta}{\mathrm{ds}/\mathrm{d}\theta}\:=\:\frac{\mathrm{1}}{\mathrm{a}\sqrt{\mathrm{2}}}\:×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\left(−\mathrm{cos}\:\theta\:\hat {\mathrm{i}}−\mathrm{sin}\:\theta\:\hat {\mathrm{j}}\right) \\ $$$$=\:−\frac{\mathrm{cos}\:\theta\:\hat {\mathrm{i}}}{\mathrm{2a}}\:−\frac{\mathrm{sin}\:\theta\:\hat {\mathrm{j}}}{\mathrm{2a}} \\ $$$$\mathrm{magnitude}\:\mid\mathrm{K}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2a}}\:. \\ $$

Commented by bemath last updated on 13/Jun/20

thank you

$$\mathrm{thank}\:\mathrm{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com