Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 98355 by aurpeyz last updated on 13/Jun/20

Commented by aurpeyz last updated on 13/Jun/20

pls help me

$$\mathrm{pls}\:\mathrm{help}\:\mathrm{me} \\ $$

Answered by mr W last updated on 13/Jun/20

Commented by mr W last updated on 14/Jun/20

m_1 =0.4 g  m_2 =1.6 g  v_2 =4.4 m/s  m_1 v_1  sin α=m_2 v_2  sin β   ...(i)  m_1 v_1  cos α+m_2 v_2  cos β=m_1 u_1    ...(ii)  (1/2)m_1 u_1 ^2 =(1/2)m_1 v_1 ^2 +(1/2)m_2 v_2 ^2    ...(iii)  we have three equations for three  unknowns: u_1 , v_1  and β.  from (i):  sin β=((m_1 v_1 sin α)/(m_2 v_2 ))  from (ii):  cos β=((m_1 (u_1 −v_1 cos α))/(m_2 v_2 ))  sin^2  β+cos^2  β=1:  ((m_1 ^2 v_1 ^2 sin^2  α+m_1 ^2 (u_1 −v_1 cos α)^2 )/(m_2 ^2 v_2 ^2 ))=1  u_1 ^2 +v_1 ^2 −2u_1 v_1 cos α=((m_2 /m_1 ))^2 v_2 ^2    ...(iv)  from (iii):  u_1 ^2 −v_1 ^2 =((m_2 /m_1 ))v_2 ^2    ...(v)  let X=u_1 +v_1 , Y=u_1 v_1   (u_1 +v_1 )^2 −2u_1 v_1 (1+cos α)=((m_2 /m_1 ))^2 v_2 ^2   X^2 −2(1+cos α)Y=((m_2 /m_1 ))^2 v_2 ^2 =16v_2 ^2    ...(vi)  (u_1 +v_1 )^2 (u_1 −v_1 )^2 =((m_2 /m_1 ))^2 v_2 ^4   X^2 (X^2 −4Y)=((m_2 /m_1 ))^2 v_2 ^4 =16v_2 ^4    ...(vii)  we get  Y=u_1 v_1 =89.39  X=u_1 +v_1 =19.33  u_1 , v_1  are roots of  x^2 −19.33x+89.39=0  ⇒x_1 =u_1 =11.67 m/s  ⇒x_2 =v_1 =7.66 m/s  βo=sin^(−1) ((m_1 v_1 sin α)/(m_2 v_2 ))=19.48°

$${m}_{\mathrm{1}} =\mathrm{0}.\mathrm{4}\:{g} \\ $$$${m}_{\mathrm{2}} =\mathrm{1}.\mathrm{6}\:{g} \\ $$$${v}_{\mathrm{2}} =\mathrm{4}.\mathrm{4}\:{m}/{s} \\ $$$${m}_{\mathrm{1}} {v}_{\mathrm{1}} \:\mathrm{sin}\:\alpha={m}_{\mathrm{2}} {v}_{\mathrm{2}} \:\mathrm{sin}\:\beta\:\:\:...\left({i}\right) \\ $$$${m}_{\mathrm{1}} {v}_{\mathrm{1}} \:\mathrm{cos}\:\alpha+{m}_{\mathrm{2}} {v}_{\mathrm{2}} \:\mathrm{cos}\:\beta={m}_{\mathrm{1}} {u}_{\mathrm{1}} \:\:\:...\left({ii}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {u}_{\mathrm{1}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {v}_{\mathrm{1}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$${we}\:{have}\:{three}\:{equations}\:{for}\:{three} \\ $$$${unknowns}:\:{u}_{\mathrm{1}} ,\:{v}_{\mathrm{1}} \:{and}\:\beta. \\ $$$${from}\:\left({i}\right): \\ $$$$\mathrm{sin}\:\beta=\frac{{m}_{\mathrm{1}} {v}_{\mathrm{1}} \mathrm{sin}\:\alpha}{{m}_{\mathrm{2}} {v}_{\mathrm{2}} } \\ $$$${from}\:\left({ii}\right): \\ $$$$\mathrm{cos}\:\beta=\frac{{m}_{\mathrm{1}} \left({u}_{\mathrm{1}} −{v}_{\mathrm{1}} \mathrm{cos}\:\alpha\right)}{{m}_{\mathrm{2}} {v}_{\mathrm{2}} } \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\beta+\mathrm{cos}^{\mathrm{2}} \:\beta=\mathrm{1}: \\ $$$$\frac{{m}_{\mathrm{1}} ^{\mathrm{2}} {v}_{\mathrm{1}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha+{m}_{\mathrm{1}} ^{\mathrm{2}} \left({u}_{\mathrm{1}} −{v}_{\mathrm{1}} \mathrm{cos}\:\alpha\right)^{\mathrm{2}} }{{m}_{\mathrm{2}} ^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} }=\mathrm{1} \\ $$$${u}_{\mathrm{1}} ^{\mathrm{2}} +{v}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{u}_{\mathrm{1}} {v}_{\mathrm{1}} \mathrm{cos}\:\alpha=\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:...\left({iv}\right) \\ $$$${from}\:\left({iii}\right): \\ $$$${u}_{\mathrm{1}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} =\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right){v}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:...\left({v}\right) \\ $$$${let}\:{X}={u}_{\mathrm{1}} +{v}_{\mathrm{1}} ,\:{Y}={u}_{\mathrm{1}} {v}_{\mathrm{1}} \\ $$$$\left({u}_{\mathrm{1}} +{v}_{\mathrm{1}} \right)^{\mathrm{2}} −\mathrm{2}{u}_{\mathrm{1}} {v}_{\mathrm{1}} \left(\mathrm{1}+\mathrm{cos}\:\alpha\right)=\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${X}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\alpha\right){Y}=\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{16}{v}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:...\left({vi}\right) \\ $$$$\left({u}_{\mathrm{1}} +{v}_{\mathrm{1}} \right)^{\mathrm{2}} \left({u}_{\mathrm{1}} −{v}_{\mathrm{1}} \right)^{\mathrm{2}} =\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{4}} \\ $$$${X}^{\mathrm{2}} \left({X}^{\mathrm{2}} −\mathrm{4}{Y}\right)=\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{4}} =\mathrm{16}{v}_{\mathrm{2}} ^{\mathrm{4}} \:\:\:...\left({vii}\right) \\ $$$${we}\:{get} \\ $$$${Y}={u}_{\mathrm{1}} {v}_{\mathrm{1}} =\mathrm{89}.\mathrm{39} \\ $$$${X}={u}_{\mathrm{1}} +{v}_{\mathrm{1}} =\mathrm{19}.\mathrm{33} \\ $$$${u}_{\mathrm{1}} ,\:{v}_{\mathrm{1}} \:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{2}} −\mathrm{19}.\mathrm{33}{x}+\mathrm{89}.\mathrm{39}=\mathrm{0} \\ $$$$\Rightarrow{x}_{\mathrm{1}} ={u}_{\mathrm{1}} =\mathrm{11}.\mathrm{67}\:{m}/{s} \\ $$$$\Rightarrow{x}_{\mathrm{2}} ={v}_{\mathrm{1}} =\mathrm{7}.\mathrm{66}\:{m}/{s} \\ $$$$\beta{o}=\mathrm{sin}^{−\mathrm{1}} \frac{{m}_{\mathrm{1}} {v}_{\mathrm{1}} \mathrm{sin}\:\alpha}{{m}_{\mathrm{2}} {v}_{\mathrm{2}} }=\mathrm{19}.\mathrm{48}° \\ $$

Commented by 1549442205 last updated on 14/Jun/20

we infer tan𝛃=((v_1 sin𝛂)/(u_1 −v_1 cos𝛂))(1)  In above formula known v_1 =4.4,α=50°  Dividing (4i)by (5i) we get ((u_1 ^2 +v_1 ^2 −2u_1 v_1 cosα)/(u_1 ^2 −v_1 ^2 ))=(m_2 /m_1 )=4  which gives us the quadratic with respect  to u_1     3u_1 ^2 +2u_1 v_1 cosα−5v_1 ^2 =0(2)  which has unique root u_1 =4.8153(m/s)  Replace into (1) we obtain:  tanβ=1.69629⇒β≈59°28′

$$\mathrm{we}\:\mathrm{infer}\:\boldsymbol{\mathrm{tan}\beta}=\frac{\boldsymbol{\mathrm{v}}_{\mathrm{1}} \boldsymbol{\mathrm{sin}\alpha}}{\boldsymbol{\mathrm{u}}_{\mathrm{1}} −\boldsymbol{\mathrm{v}}_{\mathrm{1}} \boldsymbol{\mathrm{cos}\alpha}}\left(\mathrm{1}\right) \\ $$$$\mathrm{In}\:\mathrm{above}\:\mathrm{formula}\:\mathrm{known}\:\mathrm{v}_{\mathrm{1}} =\mathrm{4}.\mathrm{4},\alpha=\mathrm{50}° \\ $$$$\mathrm{Dividing}\:\left(\mathrm{4i}\right)\mathrm{by}\:\left(\mathrm{5i}\right)\:\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{u}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2u}_{\mathrm{1}} \mathrm{v}_{\mathrm{1}} \mathrm{cos}\alpha}{\mathrm{u}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} }=\frac{\mathrm{m}_{\mathrm{2}} }{\mathrm{m}_{\mathrm{1}} }=\mathrm{4} \\ $$$$\mathrm{which}\:\mathrm{gives}\:\mathrm{us}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{with}\:\mathrm{respect}\:\:\mathrm{to}\:\mathrm{u}_{\mathrm{1}} \\ $$$$\:\:\mathrm{3u}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2u}_{\mathrm{1}} \mathrm{v}_{\mathrm{1}} \mathrm{cos}\alpha−\mathrm{5v}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{0}\left(\mathrm{2}\right) \\ $$$$\mathrm{which}\:\mathrm{has}\:\mathrm{unique}\:\mathrm{root}\:\mathrm{u}_{\mathrm{1}} =\mathrm{4}.\mathrm{8153}\left(\mathrm{m}/\mathrm{s}\right) \\ $$$$\mathrm{Replace}\:\mathrm{into}\:\left(\mathrm{1}\right)\:\mathrm{we}\:\mathrm{obtain}: \\ $$$$\mathrm{tan}\beta=\mathrm{1}.\mathrm{69629}\Rightarrow\beta\approx\mathrm{59}°\mathrm{28}' \\ $$

Commented by aurpeyz last updated on 13/Jun/20

no v1

$$\mathrm{no}\:\mathrm{v1} \\ $$

Commented by aurpeyz last updated on 13/Jun/20

is this the final answer Sir?

$$\mathrm{is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{Sir}? \\ $$

Commented by mr W last updated on 13/Jun/20

i got the same result as given.  i didn′t write all steps for the solution  of equations. that′s not difficult. you  can do it by yourself.

$${i}\:{got}\:{the}\:{same}\:{result}\:{as}\:{given}. \\ $$$${i}\:{didn}'{t}\:{write}\:{all}\:{steps}\:{for}\:{the}\:{solution} \\ $$$${of}\:{equations}.\:{that}'{s}\:{not}\:{difficult}.\:{you} \\ $$$${can}\:{do}\:{it}\:{by}\:{yourself}. \\ $$

Commented by 1549442205 last updated on 14/Jun/20

great work,thank prof.sir.I did a mistake

$$\mathrm{great}\:\mathrm{work},\mathrm{thank}\:\mathrm{prof}.\mathrm{sir}.\mathrm{I}\:\mathrm{did}\:\mathrm{a}\:\mathrm{mistake} \\ $$

Commented by mr W last updated on 14/Jun/20

i made the same mistake at first as  you can see in my diagram, because i   didn′t notice that m_2 >m_1 . when  m_2 >m_1 , m_1  must move backwards   after collision, i.e. the angle 50° is  backwards, in the diagram α≠50°,  but α=130°, then you can get a proper  solution for the equations.

$${i}\:{made}\:{the}\:{same}\:{mistake}\:{at}\:{first}\:{as} \\ $$$${you}\:{can}\:{see}\:{in}\:{my}\:{diagram},\:{because}\:{i}\: \\ $$$${didn}'{t}\:{notice}\:{that}\:{m}_{\mathrm{2}} >{m}_{\mathrm{1}} .\:{when} \\ $$$${m}_{\mathrm{2}} >{m}_{\mathrm{1}} ,\:{m}_{\mathrm{1}} \:{must}\:{move}\:{backwards}\: \\ $$$${after}\:{collision},\:{i}.{e}.\:{the}\:{angle}\:\mathrm{50}°\:{is} \\ $$$${backwards},\:{in}\:{the}\:{diagram}\:\alpha\neq\mathrm{50}°, \\ $$$${but}\:\alpha=\mathrm{130}°,\:{then}\:{you}\:{can}\:{get}\:{a}\:{proper} \\ $$$${solution}\:{for}\:{the}\:{equations}. \\ $$

Commented by aurpeyz last updated on 14/Jun/20

  (u_1 +v_1 )^2 (u_1 −v_1 )^2 =((m_2 /m_1 ))^2 v_2 ^4   how did you get this Sir?

$$ \\ $$$$\left({u}_{\mathrm{1}} +{v}_{\mathrm{1}} \right)^{\mathrm{2}} \left({u}_{\mathrm{1}} −{v}_{\mathrm{1}} \right)^{\mathrm{2}} =\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{4}} \\ $$$$\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{this}\:\mathrm{Sir}? \\ $$

Commented by mr W last updated on 14/Jun/20

squaring eqn. (v)

$${squaring}\:{eqn}.\:\left({v}\right) \\ $$

Commented by aurpeyz last updated on 14/Jun/20

pls how do you get u1 without knowing V1? pls

$$\mathrm{pls}\:\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{get}\:\mathrm{u1}\:\mathrm{without}\:\mathrm{knowing}\:\mathrm{V1}?\:\mathrm{pls} \\ $$

Commented by mr W last updated on 14/Jun/20

you can solve (vi) and (vii) to get  X and Y with   X=u_1 +v_1  and Y=u_1 v_1   after you have got X and Y, you can  get u_1  and v_1 : they are just the roots  of x^2 −Xx+Y=0.

$${you}\:{can}\:{solve}\:\left({vi}\right)\:{and}\:\left({vii}\right)\:{to}\:{get} \\ $$$${X}\:{and}\:{Y}\:{with}\: \\ $$$${X}={u}_{\mathrm{1}} +{v}_{\mathrm{1}} \:{and}\:{Y}={u}_{\mathrm{1}} {v}_{\mathrm{1}} \\ $$$${after}\:{you}\:{have}\:{got}\:{X}\:{and}\:{Y},\:{you}\:{can} \\ $$$${get}\:{u}_{\mathrm{1}} \:{and}\:{v}_{\mathrm{1}} :\:{they}\:{are}\:{just}\:{the}\:{roots} \\ $$$${of}\:{x}^{\mathrm{2}} −{Xx}+{Y}=\mathrm{0}. \\ $$

Commented by aurpeyz last updated on 14/Jun/20

i will work on that Sir. this is the best platform for learning sincerely

$$\mathrm{i}\:\mathrm{will}\:\mathrm{work}\:\mathrm{on}\:\mathrm{that}\:\mathrm{Sir}.\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{best}\:\mathrm{platform}\:\mathrm{for}\:\mathrm{learning}\:\mathrm{sincerely} \\ $$

Commented by mr W last updated on 14/Jun/20

just try sir! good luck!  i showed only one of possible ways  which i think is good for beginers to  understand.  maybe there are other better ways.

$${just}\:{try}\:{sir}!\:{good}\:{luck}! \\ $$$${i}\:{showed}\:{only}\:{one}\:{of}\:{possible}\:{ways} \\ $$$${which}\:{i}\:{think}\:{is}\:{good}\:{for}\:{beginers}\:{to} \\ $$$${understand}. \\ $$$${maybe}\:{there}\:{are}\:{other}\:{better}\:{ways}. \\ $$

Commented by aurpeyz last updated on 14/Jun/20

pls sir. explain how you solve (vi) and (vii) to get X and Y. thanks alot Sir

$$\mathrm{pls}\:\mathrm{sir}.\:\mathrm{explain}\:\mathrm{how}\:\mathrm{you}\:\mathrm{solve}\:\left(\mathrm{vi}\right)\:\mathrm{and}\:\left(\mathrm{vii}\right)\:\mathrm{to}\:\mathrm{get}\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y}.\:\mathrm{thanks}\:\mathrm{alot}\:\mathrm{Sir} \\ $$

Commented by aurpeyz last updated on 14/Jun/20

hurray. i have gotten it Sir. thanks alot

$$\mathrm{hurray}.\:\mathrm{i}\:\mathrm{have}\:\mathrm{gotten}\:\mathrm{it}\:\mathrm{Sir}.\:\mathrm{thanks}\:\mathrm{alot} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com