Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98426 by mathmax by abdo last updated on 13/Jun/20

let f(x) =∫_(π/4) ^(π/3)  (dt/(x+tant))  calculate f(x)  2)explicit g(x) =∫_(π/4) ^(π/3)  (dt/((x+tant)^2 ))  3) find the value of integrals ∫_(π/4) ^(π/3)  (dt/(2+tant)) and ∫_(π/4) ^(π/3)  (dt/((2+tant)^2 ))

letf(x)=π4π3dtx+tantcalculatef(x)2)explicitg(x)=π4π3dt(x+tant)23)findthevalueofintegralsπ4π3dt2+tantandπ4π3dt(2+tant)2

Answered by maths mind last updated on 14/Jun/20

f(x)=∫_1 ^(√3) (dy/((x+y)(1+y^2 )))  =(1/(1+x^2 ))∫_1 ^(√3) (((x+y)(x−y)+1+y^2 )/((x+y)(1+y^2 )))dy  =(1/(1+x^2 ))∫_1 ^(√3) {(x/(1+y^2 ))−(y/(1+y^2 ))+(1/(x+y))}dy  =(x/(1+x^2 ))[(π/(12))]−((ln(2))/(2(1+x^2 )))+((ln(((x+(√3))/(x+1))))/((1+x^2 )))  g(x)=−f′(x)  =−{((1−x^2 )/((1+x^2 )^2 ))(π/(12))+((xln(2))/((1+x^2 )^2 ))+(1/((1+x^2 )))[(1/(x+(√3)))−(1/(x+1))]−((2xln(((x+(√3))/(x+1))))/((1+x^2 )^2 ))}  3  ∫(dx/(2+tg(x)))=f(2)=(π/(30))−((ln(2))/(10))+((ln(((2+(√3))/3)))/5)  ∫(dx/((2+tg(x))^2 ))=−{((−π)/(100)).+((2ln(2))/(25))+(1/5)((1/(2+(√3)))−(1/3))−((4ln(((2+(√3))/3)))/(25))}

f(x)=13dy(x+y)(1+y2)=11+x213(x+y)(xy)+1+y2(x+y)(1+y2)dy=11+x213{x1+y2y1+y2+1x+y}dy=x1+x2[π12]ln(2)2(1+x2)+ln(x+3x+1)(1+x2)g(x)=f(x)={1x2(1+x2)2π12+xln(2)(1+x2)2+1(1+x2)[1x+31x+1]2xln(x+3x+1)(1+x2)2}3dx2+tg(x)=f(2)=π30ln(2)10+ln(2+33)5dx(2+tg(x))2={π100.+2ln(2)25+15(12+313)4ln(2+33)25}

Commented by abdomathmax last updated on 14/Jun/20

thanks sir.

thankssir.

Commented by maths mind last updated on 14/Jun/20

withe pleaser

withepleaser

Answered by abdomathmax last updated on 14/Jun/20

1) f(x) =∫_(π/4) ^(π/3)  (dt/(x+tant))  changement tant =u give  f(x) =∫_1 ^(√3)   (du/((1+u^2 )(x+u))) let decompose  F(u) =(1/((u+x)(u^2  +1))) ⇒F(u) =(a/(u+x)) +((bu +c)/(u^2  +1))  a =(1/(x^2  +1))  lim_(u→+∞) uF(u) =0 =a+b ⇒b=−(1/(x^2  +1))  F(0) =(1/x) =(a/x) +c ⇒1 =a+xc ⇒xc =1−a  =1−(1/(x^2 +1)) =(x^2 /(1+x^2 )) ⇒c =(x/(1+x^2 )) ⇒  F(u) =(1/((x^2  +1)(u+x))) +((−(1/(x^2  +1))u +(x/(1+x^2 )))/(u^2  +1))  ⇒f(x) =(1/(x^2 +1)) ∫_1 ^(√3)  (du/(u+x))  −(1/(x^2  +1)) ∫_1 ^(√3)  ((u−x)/(u^2  +1)) du  =(1/(x^2  +1))[ln∣u+x∣]_1 ^(√3)   −(1/(2(x^2  +1))) [ln(u^2  +1)]_1 ^(√3)   +(x/(x^2  +1)) [arctanu]_1 ^(√3)   =(1/(x^2  +1)){ln∣(√3)+x∣−ln∣1+x∣}  −((2ln(2))/(2(x^2  +1))) +(x/(x^2  +1))×(π/(12))  =(1/(x^2  +1))ln∣((x+(√3))/(x+1))∣−((ln2)/(x^2  +1)) +((πx)/(12(x^2  +1)))

1)f(x)=π4π3dtx+tantchangementtant=ugivef(x)=13du(1+u2)(x+u)letdecomposeF(u)=1(u+x)(u2+1)F(u)=au+x+bu+cu2+1a=1x2+1limu+uF(u)=0=a+bb=1x2+1F(0)=1x=ax+c1=a+xcxc=1a=11x2+1=x21+x2c=x1+x2F(u)=1(x2+1)(u+x)+1x2+1u+x1+x2u2+1f(x)=1x2+113duu+x1x2+113uxu2+1du=1x2+1[lnu+x]1312(x2+1)[ln(u2+1)]13+xx2+1[arctanu]13=1x2+1{ln3+xln1+x}2ln(2)2(x2+1)+xx2+1×π12=1x2+1lnx+3x+1ln2x2+1+πx12(x2+1)

Commented by abdomathmax last updated on 14/Jun/20

2) we have f^′ (x) =−∫_(π/4) ^(π/3)   (dt/((3+tant)^2 )) =−g(x)  ⇒g(x) =−f^′ (x)  we have  f(x) =(1/(x^2  +1)){ πx−ln2 +ln∣((x+(√3))/(x+1))∣} ⇒  f^′ (x) =−((2x)/((x^(2 ) +1)^2 )){ πx−ln(2)+ln∣((x+(√3))/(x+1))∣}  +(1/(x^2  +1)){ π+(((((x+(√3))/(x+1)))^′ )/((x+(√3))/(x+1)))}  =((−2x)/((x^2  +1)^2 )){πx−ln2 +ln∣((x+(√3))/(x+1))∣}  +(1/(x^2  +1)){ π +(((x+1))/(x+(√3)))×((x+1−(x+(√3)))/((x+1)^2 ))}  =((−2x)/((x^2  +1)^2 )){πx−ln2 +ln∣((x+(√3))/(x+1))∣}  +(1/(x^2  +1)){ π +((1−(√3))/((x+(√3))(x+1)))}

2)wehavef(x)=π4π3dt(3+tant)2=g(x)g(x)=f(x)wehavef(x)=1x2+1{πxln2+lnx+3x+1}f(x)=2x(x2+1)2{πxln(2)+lnx+3x+1}+1x2+1{π+(x+3x+1)x+3x+1}=2x(x2+1)2{πxln2+lnx+3x+1}+1x2+1{π+(x+1)x+3×x+1(x+3)(x+1)2}=2x(x2+1)2{πxln2+lnx+3x+1}+1x2+1{π+13(x+3)(x+1)}

Commented by mathmax by abdo last updated on 14/Jun/20

⇒g(x) =((2x)/((x^2  +1)^2 )){πx−ln2 +ln∣((x+(√3))/(x+1))∣}−(1/(x^2  +1)){π +((1−(√3))/((x+(√3))(x+1)))}

g(x)=2x(x2+1)2{πxln2+lnx+3x+1}1x2+1{π+13(x+3)(x+1)}

Commented by mathmax by abdo last updated on 14/Jun/20

3) ∫_(π/4) ^(π/3)   (dt/(2+tant)) =f(2) =(1/5)ln(((2+(√3))/3))−((ln2)/5) +((2π)/(12(5)))  =(1/5)ln(((2+(√3))/3))−((ln(2))/5) +(π/(30))

3)π4π3dt2+tant=f(2)=15ln(2+33)ln25+2π12(5)=15ln(2+33)ln(2)5+π30

Terms of Service

Privacy Policy

Contact: info@tinkutara.com