Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 98429 by mathmax by abdo last updated on 13/Jun/20

let f(x) =cos(αx) developp f at fourier serie

letf(x)=cos(αx)developpfatfourierserie

Answered by abdomathmax last updated on 15/Jun/20

f is even ⇒f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)   a_n =(2/T)∫_([T]) f(x)cos(nx)dx =(1/π)∫_(−π) ^π  cos(αx)cos(nx)dx  =(2/π) ∫_0 ^π  cos(αx)cos(nx)dx ⇒  (π/2)a_n =(1/2) ∫_0 ^π  {cos(n+α)x+cos(n−α)x}dx  ⇒πa_n =[(1/(n+α))sin(n+α)x+(1/(n−α)) sin(n−α)x]_0 ^π   =(1/(n+α)) sin(nπ +απ)+(1/(n−α))sin(nπ−απ)  =(((−1)^n  sin(απ))/(n+α))−(((−1)^n  sin(απ))/(n−α))  =(−1)^n  sin(απ){(1/(n+α))−(1/(n−α))}  =(−1)^n  sin(απ)(((−2α)/(n^2 −α^2 )))   (but α ∈ R−Z) ⇒  a_n =−2α ((sin(απ))/(π(n^2 −α^2 )))(−1)^n   a_0 =((2sin(απ))/(απ)) ⇒  cos(αx) =((sin(απ))/(απ)) −((2sin(απ))/π)Σ_(n=1) ^∞   (((−1)^n )/(n^2 −α^2 ))cos(nx)

fisevenf(x)=a02+n=1ancos(nx)an=2T[T]f(x)cos(nx)dx=1πππcos(αx)cos(nx)dx=2π0πcos(αx)cos(nx)dxπ2an=120π{cos(n+α)x+cos(nα)x}dxπan=[1n+αsin(n+α)x+1nαsin(nα)x]0π=1n+αsin(nπ+απ)+1nαsin(nπαπ)=(1)nsin(απ)n+α(1)nsin(απ)nα=(1)nsin(απ){1n+α1nα}=(1)nsin(απ)(2αn2α2)(butαRZ)an=2αsin(απ)π(n2α2)(1)na0=2sin(απ)απcos(αx)=sin(απ)απ2sin(απ)πn=1(1)nn2α2cos(nx)

Commented by abdomathmax last updated on 15/Jun/20

sorry    cos(αx) =((sin(απ))/(απ)) −((2αsin(απ))/π) Σ_(n=1) ^∞  (((−1)^n )/(n^2 −α^2 ))cos(nx)

sorrycos(αx)=sin(απ)απ2αsin(απ)πn=1(1)nn2α2cos(nx)

Commented by abdomathmax last updated on 15/Jun/20

for x=π we get   cos(απ) =((sin(απ))/(απ)) −((2α sin(απ))/π) Σ_(n=1) ^∞  (1/(n^2 −α^2 )) ⇒  cotan(απ) =(1/(απ)) −((2α)/π) Σ_(n=1) ^∞  (1/(n^2 −α^2 )) ⇒  πcotan(απ) =(1/α) −Σ_(n=1) ^∞  ((2α)/(n^2 −α^2 )) ⇒  πcotan(απ) −(1/α) =Σ_(n=1) ^∞  ((2α)/(α^2 −n^2 ))

forx=πwegetcos(απ)=sin(απ)απ2αsin(απ)πn=11n2α2cotan(απ)=1απ2απn=11n2α2πcotan(απ)=1αn=12αn2α2πcotan(απ)1α=n=12αα2n2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com