All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 98430 by mathmax by abdo last updated on 13/Jun/20
letg(x)=2cos(πx)developpgatfourierserie
Answered by abdomathmax last updated on 13/Jun/20
wehaveg(x)=2cos(πx)=4eiπx+e−iπxchangementeiπx=zgiveg(x)=4z+z−1=4zz2+1=4z(z−i)(z+i)=az−i+bz+i⇒a=4i2i=2b=−4i−2i=2⇒g(x)=12{1z−i+1z+i}=12{iiz+1+iiz−1}=i2{11+iz−11−iz}=i2{∑n=0∞(−i)nzn−∑n=0∞inzn}=−i2∑n=0∞(in−(−i)n)zn=−i2∑n=0∞2isin(nπ2)einπx=∑n=0∞sin(nπ2){cos(nπx)+isin(nπx)}butg(x)isreal⇒2cos(πx)=∑n=0∞sin(nπ2)cos(nπx)=∑n=0∞sin((2n+1)π2)cos((2n+1)πx)=∑n=0∞sin(nπ+π2)cos((2n+1)πx)=∑n=0∞(−1)ncos{(2n+1)πx}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com