Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 98430 by mathmax by abdo last updated on 13/Jun/20

let g(x) =(2/(cos(πx)))  developp g at fourier serie

letg(x)=2cos(πx)developpgatfourierserie

Answered by abdomathmax last updated on 13/Jun/20

we have g(x) =(2/(cos(πx))) =(4/(e^(iπx )  +e^(−iπx) ))  changement e^(iπx)  =z give  g(x) =(4/(z +z^(−1) )) =((4z)/(z^2 +1)) =((4z)/((z−i)(z+i)))  =(a/(z−i)) +(b/(z+i)) ⇒ a =((4i)/(2i)) =2  b =((−4i)/(−2i)) =2 ⇒g(x) =(1/2){(1/(z−i)) +(1/(z+i))}  =(1/2){(i/(iz+1)) +(i/(iz−1))} =(i/2){(1/(1+iz))−(1/(1−iz))}  =(i/2){ Σ_(n=0) ^∞  (−i)^n  z^n  −Σ_(n=0) ^∞  i^n z^n }  =−(i/2) Σ_(n=0) ^∞ (i^n −(−i)^n )z^n   =−(i/2) Σ_(n=0) ^∞ 2isin(((nπ)/2)) e^(inπx)   =Σ_(n=0) ^∞  sin(((nπ)/2)){cos(nπx)+isin(nπx)}  but g(x) is real ⇒  (2/(cos(πx))) =Σ_(n=0) ^∞  sin(((nπ)/2))cos(nπx)  =Σ_(n=0) ^∞  sin((((2n+1)π)/2))cos((2n+1)πx)  =Σ_(n=0) ^∞  sin(nπ +(π/2)) cos((2n+1)πx)  =Σ_(n=0) ^∞ (−1)^n  cos{(2n+1)πx}

wehaveg(x)=2cos(πx)=4eiπx+eiπxchangementeiπx=zgiveg(x)=4z+z1=4zz2+1=4z(zi)(z+i)=azi+bz+ia=4i2i=2b=4i2i=2g(x)=12{1zi+1z+i}=12{iiz+1+iiz1}=i2{11+iz11iz}=i2{n=0(i)nznn=0inzn}=i2n=0(in(i)n)zn=i2n=02isin(nπ2)einπx=n=0sin(nπ2){cos(nπx)+isin(nπx)}butg(x)isreal2cos(πx)=n=0sin(nπ2)cos(nπx)=n=0sin((2n+1)π2)cos((2n+1)πx)=n=0sin(nπ+π2)cos((2n+1)πx)=n=0(1)ncos{(2n+1)πx}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com