Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 98443 by Ar Brandon last updated on 14/Jun/20

Given the sequence (U_n )_(n∈N)  defined by U_0 =1 and  U_(n+1) =f(U_n ) where f(x)=(x/((x+1)^2 ))   Show by mathematical induction that ∀n∈N^∗   0<U_n ≤(1/n)

$$\mathcal{G}\mathrm{iven}\:\mathrm{the}\:\mathrm{sequence}\:\left(\mathrm{U}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{defined}\:\mathrm{by}\:\mathrm{U}_{\mathrm{0}} =\mathrm{1}\:\mathrm{and} \\ $$ $$\mathrm{U}_{\mathrm{n}+\mathrm{1}} =\mathrm{f}\left(\mathrm{U}_{\mathrm{n}} \right)\:\mathrm{where}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$ $$\mathcal{S}\mathrm{how}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \\ $$ $$\mathrm{0}<\mathrm{U}_{\mathrm{n}} \leqslant\frac{\mathrm{1}}{\mathrm{n}} \\ $$

Answered by maths mind last updated on 14/Jun/20

f(x)=(1/(x+1))−(1/((x+1)^2 ))  f′(x)=−(1/((x+1)^2 ))+(2/((x+1)^3 ))=((1−x)/((1+x)^3 ))≥0 ,∀x∈[0,1]  0<U_0 =1≤1 true  we assume That ∀n∈N 0<U_n ≤(1/n)≤1  since f is increasing over [0,1]⇒  ⇒f(0)<f(u_n )≤f((1/n))  ⇔0<U_(n+1) ≤(n/((n+1)^2 ))=(n/(n+1)).(1/(n+1))≤1.(1/(n+1))=(1/(n+1))  ⇒∀n∈N    0<U_n ≤(1/n)

$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ $${f}'\left({x}\right)=−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{1}−{x}}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }\geqslant\mathrm{0}\:,\forall{x}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$ $$\mathrm{0}<{U}_{\mathrm{0}} =\mathrm{1}\leqslant\mathrm{1}\:{true} \\ $$ $${we}\:{assume}\:{That}\:\forall{n}\in\mathbb{N}\:\mathrm{0}<{U}_{{n}} \leqslant\frac{\mathrm{1}}{{n}}\leqslant\mathrm{1} \\ $$ $${since}\:{f}\:{is}\:{increasing}\:{over}\:\left[\mathrm{0},\mathrm{1}\right]\Rightarrow \\ $$ $$\Rightarrow{f}\left(\mathrm{0}\right)<{f}\left({u}_{{n}} \right)\leqslant{f}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$ $$\Leftrightarrow\mathrm{0}<{U}_{{n}+\mathrm{1}} \leqslant\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{{n}}{{n}+\mathrm{1}}.\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\mathrm{1}.\frac{\mathrm{1}}{{n}+\mathrm{1}}=\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$ $$\Rightarrow\forall{n}\in\mathbb{N}\:\:\:\:\mathrm{0}<{U}_{{n}} \leqslant\frac{\mathrm{1}}{{n}} \\ $$

Commented byAr Brandon last updated on 14/Jun/20

Thank you ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com