Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98445 by mathmax by abdo last updated on 14/Jun/20

give at form of serie U_n =∫_0 ^1  ((x^n ln(x))/((1+x)^2 ))dx

giveatformofserieUn=01xnln(x)(1+x)2dx

Answered by mathmax by abdo last updated on 14/Jun/20

we have (1/(1+x)) =Σ_(k=0) ^∞ (−1)^k  x^k      for ∣x∣<1 ⇒  −(1/((1+x^2 ))) =Σ_(k=1) ^∞  k(−1)^k  x^(k−1)   =Σ_(k=0) ^∞ (k+1)(−1)^(k+1)  x^k  ⇒  (1/((1+x)^2 )) =Σ_(k=0) ^∞  (k+1)(−1)^k  x^k  ⇒U_n =∫_0 ^1  x^n ln(x)(Σ_(k=0) ^∞ (k+1)(−1)^k  x^k )dx  =Σ_(k=0) ^∞  (k+1)(−1)^k  ∫_0 ^1  x^(n+k)  ln(x)dx   and by parts  ∫_0 ^1  x^(n+k)  ln(x)dx =[(x^(n+k+1) /(n+k+1))ln(x)]_0 ^1  −∫_0 ^1  (x^(n+k) /(n+k+1))dx  =−(1/((n+k+1)^2 )) ⇒ U_n =−Σ_(k=0) ^∞  (k+1)(−1)^k ×(1/((n+k+1)^2 ))  =Σ_(k=0) ^∞  ((k+1)/((n+k+1)^2 ))(−1)^(k+1)  ⇒  U_n =−(1/((n+1)^2 )) +(2/((n+2)^2 ))−(3/((n+3)^2 ))+....

wehave11+x=k=0(1)kxkforx∣<11(1+x2)=k=1k(1)kxk1=k=0(k+1)(1)k+1xk1(1+x)2=k=0(k+1)(1)kxkUn=01xnln(x)(k=0(k+1)(1)kxk)dx=k=0(k+1)(1)k01xn+kln(x)dxandbyparts01xn+kln(x)dx=[xn+k+1n+k+1ln(x)]0101xn+kn+k+1dx=1(n+k+1)2Un=k=0(k+1)(1)k×1(n+k+1)2=k=0k+1(n+k+1)2(1)k+1Un=1(n+1)2+2(n+2)23(n+3)2+....

Answered by maths mind last updated on 14/Jun/20

(1/((1+x)^2 ))=(∂/∂x)(Σ_(n≥0) (−1)^(n+1) x^n )=Σ_(n≥1) n(−1)^(n+1) x^(n−1)   =Σ_(t≥0) (t+1)(−x)^t   U_n =∫_0 ^1 ((x^n ln(x))/((1+x)^2 ))dx=∫_0 ^1 x^n ln(x).Σ_(t≥0) ((t+1)(−x)^t  dx  =Σ_(t≥0) (t+1)(−1)^(t+1) ∫_0 ^∞ re^(−(n+t+1)r) dr  =Σ_(t≥0) (t+1)(−1)^(t+1) ∫_0 ^(+∞) ((ue^(−u) )/((n+t+1)^2 ))du   =Σ_(t≥0) (t+1)(−1)^(t+1) .((Γ(2))/((n++1+t)^2 ))  =Σ_(t≥0) (((−1)^(t+1) (t+1))/((n+t+1)^2 ))

1(1+x)2=x(n0(1)n+1xn)=n1n(1)n+1xn1=t0(t+1)(x)tUn=01xnln(x)(1+x)2dx=01xnln(x).t0((t+1)(x)tdx=t0(t+1)(1)t+10re(n+t+1)rdr=t0(t+1)(1)t+10+ueu(n+t+1)2du=t0(t+1)(1)t+1.Γ(2)(n++1+t)2=t0(1)t+1(t+1)(n+t+1)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com