Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98448 by Quvonchbek last updated on 14/Jun/20

       6^(273) +8^(273)   :49   prove  the  division

$$\:\:\:\:\:\:\:\mathrm{6}^{\mathrm{273}} +\mathrm{8}^{\mathrm{273}} \:\::\mathrm{49}\:\:\:\boldsymbol{{prove}}\:\:\boldsymbol{{the}}\:\:\boldsymbol{{divi}\mathrm{s}{ion}} \\ $$

Commented by Rasheed.Sindhi last updated on 14/Jun/20

      49 ∣ 2^(273) (3^(273) +4^(273) )  ∵ 49 ∤ 2^(273)   ∴ 49 ∣ (3^(273) +4^(273) )     Or     3^(273) +4^(273) ≡0(mod 49)

$$\:\:\:\:\:\:\mathrm{49}\:\mid\:\mathrm{2}^{\mathrm{273}} \left(\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \right) \\ $$$$\because\:\mathrm{49}\:\nmid\:\mathrm{2}^{\mathrm{273}} \:\:\therefore\:\mathrm{49}\:\mid\:\left(\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \right) \\ $$$$\:\:\:{Or}\:\:\:\:\:\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \equiv\mathrm{0}\left({mod}\:\mathrm{49}\right) \\ $$

Commented by mr W last updated on 14/Jun/20

do we need to prove that  3^(273) +4^(273) ≡0 (mod 49)   here sir?

$${do}\:{we}\:{need}\:{to}\:{prove}\:{that} \\ $$$$\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \equiv\mathrm{0}\:\left({mod}\:\mathrm{49}\right)\: \\ $$$${here}\:{sir}? \\ $$

Commented by Rasheed.Sindhi last updated on 14/Jun/20

Yes sir, If I understood the question.

$$\mathrm{Yes}\:\mathrm{sir},\:\mathrm{If}\:\mathrm{I}\:\mathrm{understood}\:\mathrm{the}\:\mathrm{question}. \\ $$

Commented by 1549442205 last updated on 14/Jun/20

  3^(273) +4^(273) =27^(91) +64^(91) =91.(27^(90) −27^(89) .64+27^(88) .64^2 −...−27.64^(89) +64^(90) )  Since 91=13.7,it is enough to prove that    A=(27^(90) −27^(89) .64+27^(88) .64^2 −...−27.64^(89) +64^(90) )⋮7  Since 64^k =(63+1)^k =1(mod7)and  27^(90−k) =(28−1)^(90−k) =(−1)^(90−k) (mod7),  so 27^(90−k) .64^k =(−1)^(90−k) .=(−1)^(90−k) (mod7)(k=0,1...90)  it follows that A=1−1+1−1+...−1+1=1(mod7)  because A has 91 terms  Therefore A isn′t  divisible by 7 and so   3^(273) +4^(273) isn′t divisible by 49  it is only divisible by 7  I answered the question of Mr.W

$$ \\ $$$$\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} =\mathrm{27}^{\mathrm{91}} +\mathrm{64}^{\mathrm{91}} =\mathrm{91}.\left(\mathrm{27}^{\mathrm{90}} −\mathrm{27}^{\mathrm{89}} .\mathrm{64}+\mathrm{27}^{\mathrm{88}} .\mathrm{64}^{\mathrm{2}} −...−\mathrm{27}.\mathrm{64}^{\mathrm{89}} +\mathrm{64}^{\mathrm{90}} \right) \\ $$$$\mathrm{Since}\:\mathrm{91}=\mathrm{13}.\mathrm{7},\mathrm{it}\:\mathrm{is}\:\mathrm{enough}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\:\mathrm{A}=\left(\mathrm{27}^{\mathrm{90}} −\mathrm{27}^{\mathrm{89}} .\mathrm{64}+\mathrm{27}^{\mathrm{88}} .\mathrm{64}^{\mathrm{2}} −...−\mathrm{27}.\mathrm{64}^{\mathrm{89}} +\mathrm{64}^{\mathrm{90}} \right)\vdots\mathrm{7} \\ $$$$\mathrm{Since}\:\mathrm{64}^{\mathrm{k}} =\left(\mathrm{63}+\mathrm{1}\right)^{\mathrm{k}} =\mathrm{1}\left(\mathrm{mod7}\right)\mathrm{and} \\ $$$$\mathrm{27}^{\mathrm{90}−\mathrm{k}} =\left(\mathrm{28}−\mathrm{1}\right)^{\mathrm{90}−\mathrm{k}} =\left(−\mathrm{1}\right)^{\mathrm{90}−\mathrm{k}} \left(\mathrm{mod7}\right), \\ $$$$\mathrm{so}\:\mathrm{27}^{\mathrm{90}−\mathrm{k}} .\mathrm{64}^{\mathrm{k}} =\left(−\mathrm{1}\right)^{\mathrm{90}−\mathrm{k}} .=\left(−\mathrm{1}\right)^{\mathrm{90}−\mathrm{k}} \left(\mathrm{mod7}\right)\left(\mathrm{k}=\mathrm{0},\mathrm{1}...\mathrm{90}\right) \\ $$$$\mathrm{it}\:\mathrm{follows}\:\mathrm{that}\:\mathrm{A}=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+...−\mathrm{1}+\mathrm{1}=\mathrm{1}\left(\mathrm{mod7}\right) \\ $$$$\mathrm{because}\:\mathrm{A}\:\mathrm{has}\:\mathrm{91}\:\mathrm{terms} \\ $$$$\mathrm{Therefore}\:\mathrm{A}\:\mathrm{isn}'\mathrm{t}\:\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}\:\mathrm{and}\:\mathrm{so}\: \\ $$$$\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \mathrm{isn}'\mathrm{t}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{49} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{only}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7} \\ $$$$\mathrm{I}\:\mathrm{answered}\:\mathrm{the}\:\mathrm{question}\:\mathrm{of}\:\mathrm{Mr}.\mathrm{W} \\ $$$$ \\ $$

Commented by mr W last updated on 14/Jun/20

thanks sir!  but 3^(273) +4^(273)  is divisible by 49.

$${thanks}\:{sir}! \\ $$$${but}\:\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \:{is}\:{divisible}\:{by}\:\mathrm{49}. \\ $$

Answered by Rasheed.Sindhi last updated on 14/Jun/20

6^(273) +8^(273) ≡0(mod 49)  ⇒2^(273) (3^(273) +4^(273) )≡0(mod 49)  ⇒(3^(273) +4^(273) )≡0(mod 49) [∵ 49∤2^(273) ]   ^•   4^(21) ≡1(mod 49)        (4^(21) )^(13) ≡(1)^(13) (mod 49)          4^(273) ≡1(mod 49)............(i)  ^•    3^(42) ≡1(mod 49)         (3^(42) )^6 ≡(1)^6 (mod 49)           3^(252) ≡1(mod 49)           3^(252) .3^(21) ≡1.3^(21) ≡48(mod 49)           3^(273) ≡48(mod 49)...........(ii)  (i)+(ii): 3^(273) +4^(273) ≡49≡0(mod49)             3^(273) +4^(273) ≡0(mod49)            Proved

$$\mathrm{6}^{\mathrm{273}} +\mathrm{8}^{\mathrm{273}} \equiv\mathrm{0}\left({mod}\:\mathrm{49}\right) \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{273}} \left(\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \right)\equiv\mathrm{0}\left({mod}\:\mathrm{49}\right) \\ $$$$\Rightarrow\left(\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \right)\equiv\mathrm{0}\left({mod}\:\mathrm{49}\right)\:\left[\because\:\mathrm{49}\nmid\mathrm{2}^{\mathrm{273}} \right] \\ $$$$\:\:^{\bullet} \:\:\mathrm{4}^{\mathrm{21}} \equiv\mathrm{1}\left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\left(\mathrm{4}^{\mathrm{21}} \right)^{\mathrm{13}} \equiv\left(\mathrm{1}\right)^{\mathrm{13}} \left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{4}^{\mathrm{273}} \equiv\mathrm{1}\left({mod}\:\mathrm{49}\right)............\left({i}\right) \\ $$$$\:^{\bullet} \:\:\:\mathrm{3}^{\mathrm{42}} \equiv\mathrm{1}\left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{3}^{\mathrm{42}} \right)^{\mathrm{6}} \equiv\left(\mathrm{1}\right)^{\mathrm{6}} \left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{252}} \equiv\mathrm{1}\left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{252}} .\mathrm{3}^{\mathrm{21}} \equiv\mathrm{1}.\mathrm{3}^{\mathrm{21}} \equiv\mathrm{48}\left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{273}} \equiv\mathrm{48}\left({mod}\:\mathrm{49}\right)...........\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right):\:\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \equiv\mathrm{49}\equiv\mathrm{0}\left({mod}\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{273}} +\mathrm{4}^{\mathrm{273}} \equiv\mathrm{0}\left({mod}\mathrm{49}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{Proved} \\ $$

Commented by mr W last updated on 14/Jun/20

great!

$${great}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com