Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 98461 by mr W last updated on 14/Jun/20

Commented by mr W last updated on 14/Jun/20

A long rope with mass m and length   L is fixed at one end on the ceiling  at point A. At its other end a mass M  is connected. The long rope is hanged  on the ceiling through an other thin,  short and massless rope at point B.  Find the tension in the short rope.

AlongropewithmassmandlengthLisfixedatoneendontheceilingatpointA.AtitsotherendamassMisconnected.Thelongropeishangedontheceilingthroughanotherthin,shortandmasslessropeatpointB.Findthetensionintheshortrope.

Answered by 1549442205 last updated on 14/Jun/20

Commented by 1549442205 last updated on 15/Jun/20

Suppose that the rope L is tied at the end C  so that AC=c.Then from Herong′s formula   we have h_c =(2/b)(√(p(p−a)(p−b)(p−c))) ,where  p=((a+b+c)/2).From that cos MCH^(�) =cosBCD^(�) =(h_c /a)   i)Consider the case that a^2 +c^2 =b^2  we have  cosMCH^(�) =cosBAC^(�) =(c/b)=((√(a^2 −b^2 ))/b).Henxe,  The tension of the rope BC is  T=CH=CM.cosMCH^(�) =(M+m)g.((√(b^2 −a^2 ))/b)(m−the mass of the rope L)   ii)The case  L≥c≥a^2 +b^2  then T=(M+m)g because CB⊥AB    ]

SupposethattheropeListiedattheendCsothatAC=c.ThenfromHerongsformulawehavehc=2bp(pa)(pb)(pc),wherep=a+b+c2.FromthatcosMCH^=cosBCD^=hcai)Considerthecasethata2+c2=b2wehavecosMCH^=cosBAC^=cb=a2b2b.Henxe,ThetensionoftheropeBCisT=CH=CM.cosMCH^=(M+m)g.b2a2b(mthemassoftheropeL)ii)ThecaseLca2+b2thenT=(M+m)gbecauseCBAB]

Commented by mr W last updated on 14/Jun/20

thank you sir.  but it′s not correct.  the long rope has mass, therefore  AC is not a straight, but a curve.

thankyousir.butitsnotcorrect.thelongropehasmass,thereforeACisnotastraight,butacurve.

Commented by mr W last updated on 14/Jun/20

even if the long rope were massless,  both ropes are not tied at point C,  but connected with a small pulley,  that means length c is not given, but  to determine from the condition that  the tension in AC is equal to the  tension in CM.

evenifthelongropeweremassless,bothropesarenottiedatpointC,butconnectedwithasmallpulley,thatmeanslengthcisnotgiven,buttodeterminefromtheconditionthatthetensioninACisequaltothetensioninCM.

Answered by mr W last updated on 15/Jun/20

Commented by mr W last updated on 15/Jun/20

case m=0, i.e. long rope massless  2β+(π/2)−α=π  ⇒α=2β−(π/2)  (a/(sin α))=(b/(sin (α+(π/2)−β)))  −(a/(cos 2β))=(b/(sin β))  −(a/(1−2 sin^2  β))=(b/(sin β))  2 sin^2  β−(a/b) sin β−1=0  ⇒sin β=(1/4)[(a/b)+(√(((a/b))^2 +8))]  T_C =Mg  T=2T_C  cos β  ⇒T=2Mg (√(1−(1/(16))[(a/b)+(√(((a/b))^2 +8))]^2 ))

casem=0,i.e.longropemassless2β+π2α=πα=2βπ2asinα=bsin(α+π2β)acos2β=bsinβa12sin2β=bsinβ2sin2βabsinβ1=0sinβ=14[ab+(ab)2+8]TC=MgT=2TCcosβT=2Mg1116[ab+(ab)2+8]2

Answered by mr W last updated on 15/Jun/20

Commented by mr W last updated on 15/Jun/20

case m≠0

casem0

Commented by mr W last updated on 16/Jun/20

in this case the rope section AC is  a part of the catenary.  y=h cosh (x/h)  with h=(T_0 /(ρg))=((T_C cos α)/(ρg)) and ρ=(m/L)  α=(π/2)−2β  tan α=y′=sinh (e/h)=(1/(tan 2β))  ⇒e=h sinh^(−1)  (1/(tan 2β))  f=h cosh (e/h)=h cosh (sinh^(−1)  (1/(tan 2β)))  c=b−a sin β−e=b−a sin β−h sinh^(−1)  (1/(tan 2β))  rope length AE^(⌢) =s_1   s_1 =h sinh (c/h)=h sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))  rope length EC^(⌢) =s_2   s_2 =h sinh (e/h)=(h/(tan 2β))  rope length CD=s_3   s_3 =L−s_1 −s_2   s_3 =L−h sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))−(h/(tan 2β))  T_C =Mg+ρgs_3   T_C =Mg+ρg[L−h sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))−(h/(tan 2β))]  T_C =(M+m)g−hρg[ sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))+(1/(tan 2β))]  ((hρg)/(sin 2β))=(M+m)g−hρg[ sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))+(1/(tan 2β))]  ((1+cos 2β)/(sin 2β))=(((M+m)L)/(mh))−sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))  ⇒sinh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β))) =(((M+m)L)/(mh))−((1+cos 2β)/(sin 2β))   ...(i)    d=f+a cos β  h cosh (c/h)=h cosh (sinh^(−1)  (1/(tan 2β)))+a cos β  ⇒cosh (((b−a sin β)/h)−sinh^(−1)  (1/(tan 2β)))=cosh (sinh^(−1)  (1/(tan 2β)))+(a/h) cos β   ...(ii)  ⇒[cosh (sinh^(−1)  (1/(tan 2β)))+(a/h) cos β]^2 −[(((M+m)L)/(mh))−((1+cos 2β)/(sin 2β))]^2 =1  ⇒[cosh (sinh^(−1)  (1/(tan 2β))) h+a cos β]^2 −[(((M+m)L)/m)−(((1+cos 2β)/(sin 2β)))h]^2 =h^2   ⇒[cosh (sinh^(−1)  (1/(tan 2β)))]^2 h^2 +a^2  cos^2  β+2a cos β cosh (sinh^(−1)  (1/(tan 2β)))h−[(((M+m)L)/m)]^2 −(((1+cos 2β)/(sin 2β)))^2 h^2 +2(((1+cos 2β)/(sin 2β)))(((M+m)L)/m)h=h^2   ⇒(((1+2 cos 2β)/(sin^2  2β)))h^2 −(1/(sin β))[a(√(1+cos^2  2β))+(((1+cos 2β)/(cos β)))((M/m)+1)L]h+[(((M+m)L)/m)]^2 −a^2 cos^2  β=0   ...(iii)    from (iii) we get h in terms of β.  put this into (i) or (ii) we get β.    T_C =((ρgh)/(sin 2β))  ⇒T=2T_C cos β=((ρgh)/(sin β))

inthiscasetheropesectionACisapartofthecatenary.y=hcoshxhwithh=T0ρg=TCcosαρgandρ=mLα=π22βtanα=y=sinheh=1tan2βe=hsinh11tan2βf=hcosheh=hcosh(sinh11tan2β)c=basinβe=basinβhsinh11tan2βropelengthAE=s1s1=hsinhch=hsinh(basinβhsinh11tan2β)ropelengthEC=s2s2=hsinheh=htan2βropelengthCD=s3s3=Ls1s2s3=Lhsinh(basinβhsinh11tan2β)htan2βTC=Mg+ρgs3TC=Mg+ρg[Lhsinh(basinβhsinh11tan2β)htan2β]TC=(M+m)ghρg[sinh(basinβhsinh11tan2β)+1tan2β]hρgsin2β=(M+m)ghρg[sinh(basinβhsinh11tan2β)+1tan2β]1+cos2βsin2β=(M+m)Lmhsinh(basinβhsinh11tan2β)sinh(basinβhsinh11tan2β)=(M+m)Lmh1+cos2βsin2β...(i)d=f+acosβhcoshch=hcosh(sinh11tan2β)+acosβcosh(basinβhsinh11tan2β)=cosh(sinh11tan2β)+ahcosβ...(ii)[cosh(sinh11tan2β)+ahcosβ]2[(M+m)Lmh1+cos2βsin2β]2=1[cosh(sinh11tan2β)h+acosβ]2[(M+m)Lm(1+cos2βsin2β)h]2=h2[cosh(sinh11tan2β)]2h2+a2cos2β+2acosβcosh(sinh11tan2β)h[(M+m)Lm]2(1+cos2βsin2β)2h2+2(1+cos2βsin2β)(M+m)Lmh=h2(1+2cos2βsin22β)h21sinβ[a1+cos22β+(1+cos2βcosβ)(Mm+1)L]h+[(M+m)Lm]2a2cos2β=0...(iii)from(iii)wegethintermsofβ.putthisinto(i)or(ii)wegetβ.TC=ρghsin2βT=2TCcosβ=ρghsinβ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com