All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 98463 by pranesh last updated on 14/Jun/20
Answered by maths mind last updated on 15/Jun/20
∑99k=1xkk=∫1−x991−xdx(cot(x)+......+cot99(x)99)+∫(1+cot(x))(1+cot99(x))dx∑n⩾1cotn(x)n=∑n⩾1tnn=∫1−t991−tdtΣcotk(x)kdx=∫1−cot99(x)1−cot(x).(−1−cot2(x))dxweget∫1−cot99(x)1−cot(x)(−1−cot2(x))dx+∫(1+cot(x))(1+cot99(x))dx=∫(cot99(x)−1)(1+cot2(x))+(1−cot2(x))(1+cot99(x))1−cot(x)dx=∫2cot99(x)−2cot2(x)1−cot(x)dx=−2∫cot2(x)1−cot97(x)1−cot(x)dx=−2∫cot2(x).∑96k=0cotk(x)dx=−2∫[cot2(x)+cot3(x)+.......+cot98(x)]dxsoλ=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com