All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 98537 by student work last updated on 14/Jun/20
Commented by student work last updated on 14/Jun/20
helpeme
Answered by mathmax by abdo last updated on 14/Jun/20
atformofserieI=∫lnx1+xdxletf(x)=∫0xln(t)1+tdt(x>0)case1o<x<1⇒f(x)=∫0xln(t)∑n=0∞(−1)ntndt=∑n=0∞(−1)n∫0xtnln(t)dt=∑n=0∞(−1)nAnbypartsAn=[tn+1n+1ln(t)]0x−∫0xtnn+1dt=xn+1n+1lnx−xn+1(n+1)2⇒I=∑n=0∞(−1)nn+1xn+1ln(x)−∑n=0∞(−1)n(n+1)2xn+1case2x>1⇒1x<1wedothechangementt=1u⇒f(x)=∫01ln(t)1+tdt+∫1xln(t)1+tdt(→t=1u)=∫01ln(t)1+tdt−∫1x1−lnu1+1u×−duu2=∫01ln(t)1+tdt−∫1x1lnu1+u2du=∫01ln(t)∑n=0∞(−1)ntndt−∫1x1lnt(∑n=0∞(−1)nt2n)dt=∑n=0∞(−1)n∫01tnlntdt−∑n=0∞(−1)n∫1x1t2nlntdt∫01tnln(t)dt=[tn+1n+1lnt]01−∫01tnn+1dt=−1(n+1)2⇒∫01lnt1+tdt=∑n=0∞(−1)n+1(n+1)2=∑n=1∞(−1)nn2=(21−2−1)ξ(2)=−π212∫1x1t2nln(t)dt=[t2n+12n+1ln(t)]1x1−∫1x1t2n2n+1dt=ln(x)(2n+1)x2n+1−1(2n+1)2(1−1x2n+1)⇒∫1x1lnu1+u2du=∑n=0∞(−1)nln(x)(2n+1)x2n+1−∑n=0∞(−1)n(2n+1)2(→kcatalanconstant)+∑n=0∞(−1)n(2n+1)2x2n+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com