Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98537 by student work last updated on 14/Jun/20

Commented by student work last updated on 14/Jun/20

helpe me

helpeme

Answered by mathmax by abdo last updated on 14/Jun/20

at form of serie  I =∫ ((lnx)/(1+x))dx let f(x) =∫_0 ^x  ((ln(t))/(1+t)) dt   (x>0)  case 1   o<x<1 ⇒f(x) =∫_0 ^x ln(t)Σ_(n=0) ^∞  (−1)^n  t^n  dt  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^x  t^n  ln(t) dt   =Σ_(n=0) ^∞  (−1)^n  A_n   by parts  A_n =[(t^(n+1) /(n+1))ln(t)]_0 ^x −∫_0 ^x  (t^n /(n+1)) dt =(x^(n+1) /(n+1))lnx−(x^(n+1) /((n+1)^2 )) ⇒  I =Σ_(n=0) ^∞  (((−1)^n )/(n+1)) x^(n+1) ln(x)−Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 )) x^(n+1)   case 2  x>1 ⇒(1/x)<1    we do the changement t=(1/u) ⇒  f(x) =∫_0 ^1  ((ln(t))/(1+t))dt +∫_1 ^x  ((ln(t))/(1+t)) dt(→t=(1/u))  =∫_0 ^1  ((ln(t))/(1+t))dt  −∫_(1/x) ^1  ((−lnu)/(1+(1/u)))×((−du)/u^2 )  =∫_0 ^1  ((ln(t))/(1+t))dt −∫_(1/x) ^1  ((lnu)/(1+u^2 ))du =∫_0 ^1 ln(t)Σ_(n=0) ^∞  (−1)^n  t^n dt −∫_(1/x) ^1  lnt(Σ_(n=0) ^∞  (−1)^n t^(2n) )dt  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  t^n  lnt dt −Σ_(n=0) ^∞  (−1)^n  ∫_(1/x) ^1  t^(2n)  lnt dt  ∫_0 ^1  t^n  ln(t)dt =[(t^(n+1) /(n+1))lnt]_0 ^1  −∫_0 ^1  (t^n /(n+1)) dt =−(1/((n+1)^2 )) ⇒  ∫_0 ^1  ((lnt)/(1+t))dt =Σ_(n=0) ^∞  (((−1)^(n+1) )/((n+1)^2 )) =Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2) =−(π^2 /(12))  ∫_(1/x) ^1  t^(2n) ln(t)dt =[(t^(2n+1) /(2n+1)) ln(t)]_(1/x) ^1  −∫_(1/x) ^1  (t^(2n) /(2n+1))dt  =((ln(x))/((2n+1)x^(2n+1) )) −(1/((2n+1)^2 ))(1−(1/x^(2n+1) )) ⇒  ∫_(1/x) ^1  ((lnu)/(1+u^2 ))du =Σ_(n=0) ^∞  (((−1)^n ln(x))/((2n+1)x^(2n+1) )) −Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))(→k catalan constant)  +Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2  x^(2n+1) ))

atformofserieI=lnx1+xdxletf(x)=0xln(t)1+tdt(x>0)case1o<x<1f(x)=0xln(t)n=0(1)ntndt=n=0(1)n0xtnln(t)dt=n=0(1)nAnbypartsAn=[tn+1n+1ln(t)]0x0xtnn+1dt=xn+1n+1lnxxn+1(n+1)2I=n=0(1)nn+1xn+1ln(x)n=0(1)n(n+1)2xn+1case2x>11x<1wedothechangementt=1uf(x)=01ln(t)1+tdt+1xln(t)1+tdt(t=1u)=01ln(t)1+tdt1x1lnu1+1u×duu2=01ln(t)1+tdt1x1lnu1+u2du=01ln(t)n=0(1)ntndt1x1lnt(n=0(1)nt2n)dt=n=0(1)n01tnlntdtn=0(1)n1x1t2nlntdt01tnln(t)dt=[tn+1n+1lnt]0101tnn+1dt=1(n+1)201lnt1+tdt=n=0(1)n+1(n+1)2=n=1(1)nn2=(2121)ξ(2)=π2121x1t2nln(t)dt=[t2n+12n+1ln(t)]1x11x1t2n2n+1dt=ln(x)(2n+1)x2n+11(2n+1)2(11x2n+1)1x1lnu1+u2du=n=0(1)nln(x)(2n+1)x2n+1n=0(1)n(2n+1)2(kcatalanconstant)+n=0(1)n(2n+1)2x2n+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com