Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98587 by mathmax by abdo last updated on 14/Jun/20

calculate  ∫_(−∞) ^(+∞)  ((cos(αx))/(x^4  +1))dx  (α real)

calculate+cos(αx)x4+1dx(αreal)

Answered by mathmax by abdo last updated on 15/Jun/20

A =∫_(−∞) ^(+∞)  ((cos(αx))/(x^4  +1))dx ⇒ A =Re(∫_(−∞) ^(+∞)  (e^(iαx) /(x^4  +1))dx) let ϕ(z) =(e^(iαz) /(z^4  +1))  we hsve ϕ(z) =(e^(iαz) /((z^2 −i)(z^2  +i))) =(e^(iαz) /((z^2  −e^((iπ)/2) )(z^2  −e^(−((iπ)/2)) )))  =(e^(iαz) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  we have  Res(ϕ,e^(i(π/4)) ) =lim_(z→e^((iπ)/4) )   (z−e^((iπ)/4) )ϕ(z) =lim_(z→e^((iπ)/4) )     (e^(iαe^((iπ)/4) ) /(2e^((iπ)/4) (2isin((π/2)))))  =((e^(−((iπ)/4))  ×e^(iα((1/(√2))+(i/(√2)))) )/(4i)) =((e^(−((iπ)/4))  ×e^(−(α/(√2)))  e^((iα)/(√2)) )/(4i)) =(e^(−(α/(√2))) /(4i)) e^(i(−(π/4)+(α/(√2))))   Res(ϕ,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )   (z+e^((iπ)/4) )ϕ(z)  =lim_(z→−e^(−((iπ)/4)) )      (e^(iα (−e^(−((iπ)/4)) )) /(−2 e^(−((iπ)/4)) (−2i))) =(e^((iπ)/4) /(4i)) e^(iα(−(1/(√2))+(i/(√2))))  =(e^(−(α/(√2))) /(4i)) e^(i((π/4)−(α/(√2))))  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ (e^(−(α/(√2))) /(4i)) e^(i(−(π/4) +(α/(√2))))  +(e^(−(α/(√2))) /(4i)) e^(i((π/4)−(α/(√2)))) }  =(π/2) e^(−(α/(√2))) { e^(i((π/4)−(α/(√2))))  +e^(−i((π/4)−(α/(√2)))) }  =(π/2) e^(−(α/(√2)))     (2cos((π/4)−(α/(√2))))  =π e^(−(α/(√2)))  cos((π/4) −(α/(√2))) ⇒ A =π e^(−(α/(√2)))  cos((π/4)−(α/(√2))) .

A=+cos(αx)x4+1dxA=Re(+eiαxx4+1dx)letφ(z)=eiαzz4+1wehsveφ(z)=eiαz(z2i)(z2+i)=eiαz(z2eiπ2)(z2eiπ2)=eiαz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}wehaveRes(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=limzeiπ4eiαeiπ42eiπ4(2isin(π2))=eiπ4×eiα(12+i2)4i=eiπ4×eα2eiα24i=eα24iei(π4+α2)Res(φ,eiπ4)=limzeiπ4(z+eiπ4)φ(z)=limzeiπ4eiα(eiπ4)2eiπ4(2i)=eiπ44ieiα(12+i2)=eα24iei(π4α2)+φ(z)dz=2iπ{eα24iei(π4+α2)+eα24iei(π4α2)}=π2eα2{ei(π4α2)+ei(π4α2)}=π2eα2(2cos(π4α2))=πeα2cos(π4α2)A=πeα2cos(π4α2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com