All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 98587 by mathmax by abdo last updated on 14/Jun/20
calculate∫−∞+∞cos(αx)x4+1dx(αreal)
Answered by mathmax by abdo last updated on 15/Jun/20
A=∫−∞+∞cos(αx)x4+1dx⇒A=Re(∫−∞+∞eiαxx4+1dx)letφ(z)=eiαzz4+1wehsveφ(z)=eiαz(z2−i)(z2+i)=eiαz(z2−eiπ2)(z2−e−iπ2)=eiαz(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}wehaveRes(φ,eiπ4)=limz→eiπ4(z−eiπ4)φ(z)=limz→eiπ4eiαeiπ42eiπ4(2isin(π2))=e−iπ4×eiα(12+i2)4i=e−iπ4×e−α2eiα24i=e−α24iei(−π4+α2)Res(φ,−e−iπ4)=limz→−e−iπ4(z+eiπ4)φ(z)=limz→−e−iπ4eiα(−e−iπ4)−2e−iπ4(−2i)=eiπ44ieiα(−12+i2)=e−α24iei(π4−α2)⇒∫−∞+∞φ(z)dz=2iπ{e−α24iei(−π4+α2)+e−α24iei(π4−α2)}=π2e−α2{ei(π4−α2)+e−i(π4−α2)}=π2e−α2(2cos(π4−α2))=πe−α2cos(π4−α2)⇒A=πe−α2cos(π4−α2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com