Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 98596 by bemath last updated on 15/Jun/20

Commented by bobhans last updated on 15/Jun/20

⇒(x^3 +x^2 −2)+(x^2 +3x−4)i = 0  (1) real parts ⇒x^3 +x^2 −2 = 0  (x−1)(x^2 +2x+2)=0 ⇒ { ((x=1)),((x= ((−2± 2i)/2) = −1± i)) :}  (2)imaginery parts ⇒x^2 +3x−4 =0  (x+4)(x−1) = 0 ⇒ { ((x=−4)),((x=1)) :}  the solution we get x ∈ {real parts} ∩ { imaginery parts}  ⇒ x = 1 ■

$$\Rightarrow\left({x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}\right)+\left({x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{4}\right){i}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:{real}\:{parts}\:\Rightarrow{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}\:=\:\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{0}\:\Rightarrow\begin{cases}{{x}=\mathrm{1}}\\{{x}=\:\frac{−\mathrm{2}\pm\:\mathrm{2}{i}}{\mathrm{2}}\:=\:−\mathrm{1}\pm\:{i}}\end{cases} \\ $$$$\left(\mathrm{2}\right){imaginery}\:{parts}\:\Rightarrow{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{4}\:=\mathrm{0} \\ $$$$\left({x}+\mathrm{4}\right)\left({x}−\mathrm{1}\right)\:=\:\mathrm{0}\:\Rightarrow\begin{cases}{{x}=−\mathrm{4}}\\{{x}=\mathrm{1}}\end{cases} \\ $$$${the}\:{solution}\:{we}\:{get}\:{x}\:\in\:\left\{\mathrm{real}\:\mathrm{parts}\right\}\:\cap\:\left\{\:\mathrm{imaginery}\:\mathrm{parts}\right\} \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{1}\:\blacksquare \\ $$

Commented by MJS last updated on 15/Jun/20

your method works only if there′s a real root  try this one:  x^3 −(4+4i)x^2 +11ix+(5−5i)=0

$$\mathrm{your}\:\mathrm{method}\:\mathrm{works}\:\mathrm{only}\:\mathrm{if}\:\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{real}\:\mathrm{root} \\ $$$$\mathrm{try}\:\mathrm{this}\:\mathrm{one}: \\ $$$${x}^{\mathrm{3}} −\left(\mathrm{4}+\mathrm{4i}\right){x}^{\mathrm{2}} +\mathrm{11i}{x}+\left(\mathrm{5}−\mathrm{5i}\right)=\mathrm{0} \\ $$

Answered by MJS last updated on 15/Jun/20

x^3 +x^2 −2=0∧x^2 +3x−4=0  easy to see that one solution is x=1  ⇒  (x−1)(x^2 +(2+i)x+(2+4i))=0  x_1 =1  x_(2, 3) =−((2+i)/2)±(√((((2+i)^2 )/4)−(2+4i)))=       =−1−(1/2)i±(√(−(5/4)−3i))=−1−(1/2)i±(1−(3/2)i)  ⇒  x_2 =−2i  x_3 =−2+i

$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}=\mathrm{0}\wedge{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{is}\:{x}=\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{i}\right){x}+\left(\mathrm{2}+\mathrm{4i}\right)\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{1} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} =−\frac{\mathrm{2}+\mathrm{i}}{\mathrm{2}}\pm\sqrt{\frac{\left(\mathrm{2}+\mathrm{i}\right)^{\mathrm{2}} }{\mathrm{4}}−\left(\mathrm{2}+\mathrm{4i}\right)}= \\ $$$$\:\:\:\:\:=−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}\pm\sqrt{−\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{3i}}=−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}\pm\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{i}\right) \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{2}} =−\mathrm{2i} \\ $$$${x}_{\mathrm{3}} =−\mathrm{2}+\mathrm{i} \\ $$

Commented by bobhans last updated on 15/Jun/20

oo yes sir. if x∈ C .you are right sir

$$\mathrm{oo}\:\mathrm{yes}\:\mathrm{sir}.\:\mathrm{if}\:\mathrm{x}\in\:\mathbb{C}\:.\mathrm{you}\:\mathrm{are}\:\mathrm{right}\:\mathrm{sir} \\ $$

Commented by bemath last updated on 15/Jun/20

where does the eq come from  x^2 +(2+i)x+2+4i = 0 sir?

$$\mathrm{where}\:\mathrm{does}\:\mathrm{the}\:\mathrm{eq}\:\mathrm{come}\:\mathrm{from} \\ $$$$\mathrm{x}^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{i}\right)\mathrm{x}+\mathrm{2}+\mathrm{4i}\:=\:\mathrm{0}\:\mathrm{sir}? \\ $$

Commented by MJS last updated on 15/Jun/20

you can use long division

$$\mathrm{you}\:\mathrm{can}\:\mathrm{use}\:\mathrm{long}\:\mathrm{division} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com