Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 98602 by bemath last updated on 15/Jun/20

find integral solution  of y^2  = x^3 +1

$$\mathrm{find}\:\mathrm{integral}\:\mathrm{solution} \\ $$$$\mathrm{of}\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{1}\: \\ $$

Commented by bemath last updated on 15/Jun/20

oo yes sir. thank you

$$\mathrm{oo}\:\mathrm{yes}\:\mathrm{sir}.\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by Rasheed.Sindhi last updated on 15/Jun/20

Sir (1,±2) doesn′t satisfy:       (±2)^2 ≠(1)^3 +1           4≠2  I′ve extended my answer and now  it includes all solutions.

$$\mathrm{Sir}\:\left(\mathrm{1},\pm\mathrm{2}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{satisfy}: \\ $$$$\:\:\:\:\:\left(\pm\mathrm{2}\right)^{\mathrm{2}} \neq\left(\mathrm{1}\right)^{\mathrm{3}} +\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{4}\neq\mathrm{2} \\ $$$$\mathrm{I}'\mathrm{ve}\:\mathrm{extended}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{and}\:\mathrm{now} \\ $$$$\mathrm{it}\:\mathrm{includes}\:\mathrm{all}\:\mathrm{solutions}. \\ $$

Commented by Rasheed.Sindhi last updated on 15/Jun/20

y^2 =x^3 +1  ^• x^3 +1 is perfect square.It may be  0 also provided that x is an integer.  So y^2 =x^3 +1=0               x^3 =−1              x=−1⇒y=0             (−1,0)  ^• y^2 =(x+1)(x^2 −x+1)  x+1=x^2 −x+1  x^2 −2x=0  x(x−2)=0  x=0  ∣ x=2  x=0⇒y^2 =0^3 +1⇒y=±1  x=2⇒y^2 =2^3 +1⇒y=±3  (−1,0),(0,±1),(2,±3)

$$\mathrm{y}^{\mathrm{2}} =\mathrm{x}^{\mathrm{3}} +\mathrm{1} \\ $$$$\:^{\bullet} \mathrm{x}^{\mathrm{3}} +\mathrm{1}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}.\mathrm{It}\:\mathrm{may}\:\mathrm{be} \\ $$$$\mathrm{0}\:\mathrm{also}\:\mathrm{provided}\:\mathrm{that}\:\mathrm{x}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$$$\mathrm{So}\:\mathrm{y}^{\mathrm{2}} =\mathrm{x}^{\mathrm{3}} +\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{3}} =−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}=−\mathrm{1}\Rightarrow\mathrm{y}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(−\mathrm{1},\mathrm{0}\right) \\ $$$$\:^{\bullet} \mathrm{y}^{\mathrm{2}} =\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right) \\ $$$$\mathrm{x}+\mathrm{1}=\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{2x}=\mathrm{0} \\ $$$$\mathrm{x}\left(\mathrm{x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{x}=\mathrm{0}\:\:\mid\:\mathrm{x}=\mathrm{2} \\ $$$$\mathrm{x}=\mathrm{0}\Rightarrow\mathrm{y}^{\mathrm{2}} =\mathrm{0}^{\mathrm{3}} +\mathrm{1}\Rightarrow\mathrm{y}=\pm\mathrm{1} \\ $$$$\mathrm{x}=\mathrm{2}\Rightarrow\mathrm{y}^{\mathrm{2}} =\mathrm{2}^{\mathrm{3}} +\mathrm{1}\Rightarrow\mathrm{y}=\pm\mathrm{3} \\ $$$$\left(−\mathrm{1},\mathrm{0}\right),\left(\mathrm{0},\pm\mathrm{1}\right),\left(\mathrm{2},\pm\mathrm{3}\right) \\ $$

Commented by bemath last updated on 15/Jun/20

sir i got (−1,0), (1,±2), (2,±3)

$$\mathrm{sir}\:\mathrm{i}\:\mathrm{got}\:\left(−\mathrm{1},\mathrm{0}\right),\:\left(\mathrm{1},\pm\mathrm{2}\right),\:\left(\mathrm{2},\pm\mathrm{3}\right)\: \\ $$$$ \\ $$

Commented by 1549442205 last updated on 15/Jun/20

but remain the case that x+1=u^2 ,  x^2 −x+1=v^2 ,doesn′t consider?

$$\boldsymbol{\mathrm{but}}\:\boldsymbol{\mathrm{remain}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{case}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{x}}+\mathrm{1}=\boldsymbol{\mathrm{u}}^{\mathrm{2}} , \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}+\mathrm{1}=\boldsymbol{\mathrm{v}}^{\mathrm{2}} ,\boldsymbol{\mathrm{doesn}}'\boldsymbol{\mathrm{t}}\:\boldsymbol{\mathrm{consider}}? \\ $$

Commented by Rasheed.Sindhi last updated on 15/Jun/20

Thank you sir! I′ll try to complete  my answer.

$$\mathcal{T}{hank}\:{you}\:{sir}!\:{I}'{ll}\:{try}\:{to}\:{complete} \\ $$$${my}\:{answer}. \\ $$

Answered by Rasheed.Sindhi last updated on 17/Jun/20

y^2 =(x+1)(x^2 −x+1)  Let x+1=u^2 , x^2 −x+1=v^2   x=u^2 −1,x^2 −x+1                  =(u^2 −1)^2 −(u^2 −1)+1=v^2    ⇒u^4 −2u^2 +1−u^2 +1+1=v^2    ⇒u^4 −3u^2 +3−v^2 =0     u^2 =((3±(√(9−4(3−v^2 ))))/2)     u^2 =((3±(√(9−12+4v^2 )))/2)  ⇒4v^2 −3=p^2   ⇒4v^2 −p^2 =3       (2v−p)(2v+p)=3      ( 2v−p=1∧2v+p=3 ) ∣ ( 2v−p=3∧2v+p=1)     p=1,v=1  ∣  p=−1,v=1  u^2 =((3±(√(4v^2 −3)))/2)=((3±(√(4(1)^2 −3)))/2)     =((3±1)/2)=2,1  ^• x=u^2 −1=(1)^2 −1=0⇒y^2 =x^3 +1  ⇒y^2 =1⇒y=±1  (0,±1)  ^• x=u^2 −1=2−1=1⇒y^2 =1^3 +1  ⇒y=±(√2)    (Not exceptable)  So when x+1 & x^2 −x+1 are both  perfect square (x,y)=(0,±1)

$${y}^{\mathrm{2}} =\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$${Let}\:{x}+\mathrm{1}={u}^{\mathrm{2}} ,\:{x}^{\mathrm{2}} −{x}+\mathrm{1}={v}^{\mathrm{2}} \\ $$$${x}={u}^{\mathrm{2}} −\mathrm{1},{x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} −\left({u}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{1}={v}^{\mathrm{2}} \\ $$$$\:\Rightarrow{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}−{u}^{\mathrm{2}} +\mathrm{1}+\mathrm{1}={v}^{\mathrm{2}} \\ $$$$\:\Rightarrow{u}^{\mathrm{4}} −\mathrm{3}{u}^{\mathrm{2}} +\mathrm{3}−{v}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:{u}^{\mathrm{2}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{4}\left(\mathrm{3}−{v}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\:\:\:{u}^{\mathrm{2}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{12}+\mathrm{4}{v}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{v}^{\mathrm{2}} −\mathrm{3}={p}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{v}^{\mathrm{2}} −{p}^{\mathrm{2}} =\mathrm{3} \\ $$$$\:\:\:\:\:\left(\mathrm{2}{v}−{p}\right)\left(\mathrm{2}{v}+{p}\right)=\mathrm{3} \\ $$$$\:\:\:\:\left(\:\mathrm{2}{v}−{p}=\mathrm{1}\wedge\mathrm{2}{v}+{p}=\mathrm{3}\:\right)\:\mid\:\left(\:\mathrm{2}{v}−{p}=\mathrm{3}\wedge\mathrm{2}{v}+{p}=\mathrm{1}\right) \\ $$$$\:\:\:{p}=\mathrm{1},{v}=\mathrm{1}\:\:\mid\:\:{p}=−\mathrm{1},{v}=\mathrm{1} \\ $$$${u}^{\mathrm{2}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{4}{v}^{\mathrm{2}} −\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{3}\pm\sqrt{\mathrm{4}\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3}}}{\mathrm{2}} \\ $$$$\:\:\:=\frac{\mathrm{3}\pm\mathrm{1}}{\mathrm{2}}=\mathrm{2},\mathrm{1} \\ $$$$\:^{\bullet} {x}={u}^{\mathrm{2}} −\mathrm{1}=\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\Rightarrow{y}^{\mathrm{2}} ={x}^{\mathrm{3}} +\mathrm{1} \\ $$$$\Rightarrow{y}^{\mathrm{2}} =\mathrm{1}\Rightarrow{y}=\pm\mathrm{1} \\ $$$$\left(\mathrm{0},\pm\mathrm{1}\right) \\ $$$$\:^{\bullet} {x}={u}^{\mathrm{2}} −\mathrm{1}=\mathrm{2}−\mathrm{1}=\mathrm{1}\Rightarrow{y}^{\mathrm{2}} =\mathrm{1}^{\mathrm{3}} +\mathrm{1} \\ $$$$\Rightarrow{y}=\pm\sqrt{\mathrm{2}}\:\:\:\:\left({Not}\:{exceptable}\right) \\ $$$${So}\:{when}\:{x}+\mathrm{1}\:\&\:{x}^{\mathrm{2}} −{x}+\mathrm{1}\:{are}\:{both} \\ $$$${perfect}\:{square}\:\left({x},{y}\right)=\left(\mathrm{0},\pm\mathrm{1}\right) \\ $$

Answered by Rasheed.Sindhi last updated on 18/Jun/20

Another method  (y−1)(y+1)=x.x^2   ⇒y−1=(y+1)^2  ∣ y+1=(y−1)^2    ^• y=y^2 +2y+2     y^2 +y+2=0      y=((−1±(√(1−8)))/2)      y∉Z   ^• y+1=y^2 −2y+1     y^2 −3y=0   y(y−3)=0    y=0 ∣ y=3  x^3 +1=y^2   x^3 =(0)^2 −1=−1       (−1,0)  x^3 =(3)^2 −1  x=2     (2,3)

$${Another}\:{method} \\ $$$$\left({y}−\mathrm{1}\right)\left({y}+\mathrm{1}\right)={x}.{x}^{\mathrm{2}} \\ $$$$\Rightarrow{y}−\mathrm{1}=\left({y}+\mathrm{1}\right)^{\mathrm{2}} \:\mid\:{y}+\mathrm{1}=\left({y}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:^{\bullet} {y}={y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{2} \\ $$$$\:\:\:{y}^{\mathrm{2}} +{y}+\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:\:{y}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{8}}}{\mathrm{2}} \\ $$$$\:\:\:\:{y}\notin\mathbb{Z} \\ $$$$\:\:^{\bullet} {y}+\mathrm{1}={y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1} \\ $$$$\:\:\:{y}^{\mathrm{2}} −\mathrm{3}{y}=\mathrm{0} \\ $$$$\:{y}\left({y}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\:\:{y}=\mathrm{0}\:\mid\:{y}=\mathrm{3} \\ $$$${x}^{\mathrm{3}} +\mathrm{1}={y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{3}} =\left(\mathrm{0}\right)^{\mathrm{2}} −\mathrm{1}=−\mathrm{1} \\ $$$$\:\:\:\:\:\left(−\mathrm{1},\mathrm{0}\right) \\ $$$${x}^{\mathrm{3}} =\left(\mathrm{3}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${x}=\mathrm{2} \\ $$$$\:\:\:\left(\mathrm{2},\mathrm{3}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com