Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 98690 by abony1303 last updated on 15/Jun/20

Commented by abony1303 last updated on 15/Jun/20

pls help

$$\mathrm{pls}\:\mathrm{help} \\ $$

Commented by PRITHWISH SEN 2 last updated on 15/Jun/20

a_1 = 3  a_2 = 3×2=6  a_3 = 6×2=12=3×2^2   . ..................  a_n  = 3×2^(n−1)   Σ_(k=1) ^n a_k = 3+3×2+3×2^2 +........3×2^(n−1) =3.((2^n −1)/(2−1))  now  3(2^n −1)>1000⇒2^n >((1003)/3) =334(1/3)  ⇒n=9  please check

$$\mathrm{a}_{\mathrm{1}} =\:\mathrm{3} \\ $$$$\mathrm{a}_{\mathrm{2}} =\:\mathrm{3}×\mathrm{2}=\mathrm{6} \\ $$$$\mathrm{a}_{\mathrm{3}} =\:\mathrm{6}×\mathrm{2}=\mathrm{12}=\mathrm{3}×\mathrm{2}^{\mathrm{2}} \\ $$$$.\:.................. \\ $$$$\mathrm{a}_{\mathrm{n}} \:=\:\mathrm{3}×\mathrm{2}^{\mathrm{n}−\mathrm{1}} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{a}_{\mathrm{k}} =\:\mathrm{3}+\mathrm{3}×\mathrm{2}+\mathrm{3}×\mathrm{2}^{\mathrm{2}} +........\mathrm{3}×\mathrm{2}^{\mathrm{n}−\mathrm{1}} =\mathrm{3}.\frac{\mathrm{2}^{\mathrm{n}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{now}} \\ $$$$\mathrm{3}\left(\mathrm{2}^{\boldsymbol{\mathrm{n}}} −\mathrm{1}\right)>\mathrm{1000}\Rightarrow\mathrm{2}^{\boldsymbol{\mathrm{n}}} >\frac{\mathrm{1003}}{\mathrm{3}}\:=\mathrm{334}\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\boldsymbol{\mathrm{n}}=\mathrm{9}\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$

Commented by abony1303 last updated on 15/Jun/20

Thank you, sir!

$$\mathrm{Thank}\:\mathrm{you},\:\mathrm{sir}! \\ $$

Answered by Rio Michael last updated on 16/Jun/20

The sequence {a_n } is of the form a_(n+1)  = k a_n    which is a Geometric progression with terms listed below:   a_1  = 3 , a_2  = 6 , a_3  = 12,..  Σ_(k=1) ^n a_k  = S_n  = ((a_1 (r^(n−1) −1))/(r−1)) ∣r∣ > 1  ⇒  ((3(2^(n−1) −1))/(2−1)) > 1000  ⇒  3(2^(n−1) −1) > 1000  ⇒  2^(n−1) −1 > 333.333^�   ⇒ 2^(n−1)  > 334.333^�      ⇒ (n−1) log 2 > log(334.333^� )   ⇒ (n−1) > 8.385...  ⇒ n > 9.385... ⇒ smallest natural number = 9  These method is generally not cool! it is possible  in this case due to the positive nature of the given  sequence.

$$\mathrm{The}\:\mathrm{sequence}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:{a}_{{n}+\mathrm{1}} \:=\:{k}\:{a}_{{n}} \: \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{a}\:\mathrm{Geometric}\:\mathrm{progression}\:\mathrm{with}\:\mathrm{terms}\:\mathrm{listed}\:\mathrm{below}: \\ $$$$\:{a}_{\mathrm{1}} \:=\:\mathrm{3}\:,\:{a}_{\mathrm{2}} \:=\:\mathrm{6}\:,\:{a}_{\mathrm{3}} \:=\:\mathrm{12},.. \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} \:=\:{S}_{{n}} \:=\:\frac{{a}_{\mathrm{1}} \left({r}^{{n}−\mathrm{1}} −\mathrm{1}\right)}{{r}−\mathrm{1}}\:\mid{r}\mid\:>\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\mathrm{3}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}}\:>\:\mathrm{1000} \\ $$$$\Rightarrow\:\:\mathrm{3}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)\:>\:\mathrm{1000} \\ $$$$\Rightarrow\:\:\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\:>\:\mathrm{333}.\mathrm{33}\bar {\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{2}^{{n}−\mathrm{1}} \:>\:\mathrm{334}.\mathrm{33}\bar {\mathrm{3}}\:\: \\ $$$$\:\Rightarrow\:\left({n}−\mathrm{1}\right)\:\mathrm{log}\:\mathrm{2}\:>\:\mathrm{log}\left(\mathrm{334}.\mathrm{33}\bar {\mathrm{3}}\right) \\ $$$$\:\Rightarrow\:\left({n}−\mathrm{1}\right)\:>\:\mathrm{8}.\mathrm{385}... \\ $$$$\Rightarrow\:{n}\:>\:\mathrm{9}.\mathrm{385}...\:\Rightarrow\:\mathrm{smallest}\:\mathrm{natural}\:\mathrm{number}\:=\:\mathrm{9} \\ $$$$\mathrm{These}\:\mathrm{method}\:\mathrm{is}\:\mathrm{generally}\:\mathrm{not}\:\mathrm{cool}!\:\mathrm{it}\:\mathrm{is}\:\mathrm{possible} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{due}\:\mathrm{to}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{sequence}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com