Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98761 by bemath last updated on 16/Jun/20

(√(x+(√x) )) −(√(x−(√x))) = m(√(x/(x+(√x))))  m is a real parameter

$$\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}\:}\:−\sqrt{\mathrm{x}−\sqrt{\mathrm{x}}}\:=\:\mathrm{m}\sqrt{\frac{\mathrm{x}}{\mathrm{x}+\sqrt{\mathrm{x}}}} \\ $$$$\mathrm{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{parameter} \\ $$

Commented by MJS last updated on 16/Jun/20

if x∈R  ⇒ x>0∧x−(√x)≥0 ⇒ x≥1  (√(x+(√x)))−(√(x−(√x)))=m(√(x/(x+(√x))))  (√((1+(√x))(√x)))−(√((−1+(√x))(√x)))=m(√((√x)/(1+(√x))))  x≥1 ⇒ we are allowed to divide by (√x)  (√(1+(√x)))−(√(−1+(√x)))=(m/(√(1+(√x))))  1+(√x)−(√(−1+(√x)))×(√(1+(√x)))=m  −1+(√x)≥0∧1+(√x)≥0  1+(√x)−(√(x−1))=m  ⇒ 1<m≤2  (√x)−(√(x−1))=m−1  squaring (both sides >0)  2x−1−2(√(x(x−1)))=(m−1)^2   2(√(x(x−1)))=2x−1−(m−1)^2        to prove: 2x−1−(m−1)^2 ≥0       2x−1≥(m−1)^2        x≥1 ⇒ 2x−1≥1       (√(2x−1))≥m−1       (√(2x−1))+1≥m       (√(2x−1))+1≥2∧m≤2 ⇒ true  squaring (both sides >0)  4x(x−1)=(2x−1−(m−1)^2 )^2   4(m−1)^2 x=(m^2 −2m+2)^2   x=(((m^2 −2m+2)^2 )/(4(m−1)^2 ))∧1<m≤2

$$\mathrm{if}\:{x}\in\mathbb{R} \\ $$$$\Rightarrow\:{x}>\mathrm{0}\wedge{x}−\sqrt{{x}}\geqslant\mathrm{0}\:\Rightarrow\:{x}\geqslant\mathrm{1} \\ $$$$\sqrt{{x}+\sqrt{{x}}}−\sqrt{{x}−\sqrt{{x}}}={m}\sqrt{\frac{{x}}{{x}+\sqrt{{x}}}} \\ $$$$\sqrt{\left(\mathrm{1}+\sqrt{{x}}\right)\sqrt{{x}}}−\sqrt{\left(−\mathrm{1}+\sqrt{{x}}\right)\sqrt{{x}}}={m}\sqrt{\frac{\sqrt{{x}}}{\mathrm{1}+\sqrt{{x}}}} \\ $$$${x}\geqslant\mathrm{1}\:\Rightarrow\:\mathrm{we}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{divide}\:\mathrm{by}\:\sqrt{{x}} \\ $$$$\sqrt{\mathrm{1}+\sqrt{{x}}}−\sqrt{−\mathrm{1}+\sqrt{{x}}}=\frac{{m}}{\sqrt{\mathrm{1}+\sqrt{{x}}}} \\ $$$$\mathrm{1}+\sqrt{{x}}−\sqrt{−\mathrm{1}+\sqrt{{x}}}×\sqrt{\mathrm{1}+\sqrt{{x}}}={m} \\ $$$$−\mathrm{1}+\sqrt{{x}}\geqslant\mathrm{0}\wedge\mathrm{1}+\sqrt{{x}}\geqslant\mathrm{0} \\ $$$$\mathrm{1}+\sqrt{{x}}−\sqrt{{x}−\mathrm{1}}={m} \\ $$$$\Rightarrow\:\mathrm{1}<{m}\leqslant\mathrm{2} \\ $$$$\sqrt{{x}}−\sqrt{{x}−\mathrm{1}}={m}−\mathrm{1} \\ $$$$\mathrm{squaring}\:\left(\mathrm{both}\:\mathrm{sides}\:>\mathrm{0}\right) \\ $$$$\mathrm{2}{x}−\mathrm{1}−\mathrm{2}\sqrt{{x}\left({x}−\mathrm{1}\right)}=\left({m}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}\sqrt{{x}\left({x}−\mathrm{1}\right)}=\mathrm{2}{x}−\mathrm{1}−\left({m}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\mathrm{to}\:\mathrm{prove}:\:\mathrm{2}{x}−\mathrm{1}−\left({m}−\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{2}{x}−\mathrm{1}\geqslant\left({m}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:{x}\geqslant\mathrm{1}\:\Rightarrow\:\mathrm{2}{x}−\mathrm{1}\geqslant\mathrm{1} \\ $$$$\:\:\:\:\:\sqrt{\mathrm{2}{x}−\mathrm{1}}\geqslant{m}−\mathrm{1} \\ $$$$\:\:\:\:\:\sqrt{\mathrm{2}{x}−\mathrm{1}}+\mathrm{1}\geqslant{m} \\ $$$$\:\:\:\:\:\sqrt{\mathrm{2}{x}−\mathrm{1}}+\mathrm{1}\geqslant\mathrm{2}\wedge{m}\leqslant\mathrm{2}\:\Rightarrow\:\mathrm{true} \\ $$$$\mathrm{squaring}\:\left(\mathrm{both}\:\mathrm{sides}\:>\mathrm{0}\right) \\ $$$$\mathrm{4}{x}\left({x}−\mathrm{1}\right)=\left(\mathrm{2}{x}−\mathrm{1}−\left({m}−\mathrm{1}\right)^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\mathrm{4}\left({m}−\mathrm{1}\right)^{\mathrm{2}} {x}=\left({m}^{\mathrm{2}} −\mathrm{2}{m}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$${x}=\frac{\left({m}^{\mathrm{2}} −\mathrm{2}{m}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}\left({m}−\mathrm{1}\right)^{\mathrm{2}} }\wedge\mathrm{1}<{m}\leqslant\mathrm{2} \\ $$

Commented by john santu last updated on 16/Jun/20

(√(x+(√x))) {(√(x+(√x)))−(√(x−(√x)))} = m(√x)  x+(√x)−(√(x^2 −x)) = m(√x)   x+(1−m)(√x) = (√(x^2 −x))  squaring   x^2 +2x(√x)(1−m)+(1−m)^2 x=x^2 −x  2x(√x)(1−m)+(1−m)^2 x+x=0  x { 2(√x) (1−m)+2−2m+m^2  } =0  2(√x) = ((m^2 −2m+2)/(m−1)) ⇒(√x) = ((m^2 −2m+2)/(2m−2))  x = (((m^2 −2m+2)/(2m−2)))^2

$$\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}}\:\left\{\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}}−\sqrt{\mathrm{x}−\sqrt{\mathrm{x}}}\right\}\:=\:\mathrm{m}\sqrt{\mathrm{x}} \\ $$$$\mathrm{x}+\sqrt{\mathrm{x}}−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}}\:=\:\mathrm{m}\sqrt{\mathrm{x}}\: \\ $$$$\mathrm{x}+\left(\mathrm{1}−\mathrm{m}\right)\sqrt{\mathrm{x}}\:=\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}} \\ $$$$\mathrm{squaring}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\sqrt{\mathrm{x}}\left(\mathrm{1}−\mathrm{m}\right)+\left(\mathrm{1}−\mathrm{m}\right)^{\mathrm{2}} \mathrm{x}=\mathrm{x}^{\mathrm{2}} −\mathrm{x} \\ $$$$\mathrm{2x}\sqrt{\mathrm{x}}\left(\mathrm{1}−\mathrm{m}\right)+\left(\mathrm{1}−\mathrm{m}\right)^{\mathrm{2}} \mathrm{x}+\mathrm{x}=\mathrm{0} \\ $$$$\mathrm{x}\:\left\{\:\mathrm{2}\sqrt{\mathrm{x}}\:\left(\mathrm{1}−\mathrm{m}\right)+\mathrm{2}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \:\right\}\:=\mathrm{0} \\ $$$$\mathrm{2}\sqrt{\mathrm{x}}\:=\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{2m}+\mathrm{2}}{\mathrm{m}−\mathrm{1}}\:\Rightarrow\sqrt{\mathrm{x}}\:=\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{2m}+\mathrm{2}}{\mathrm{2m}−\mathrm{2}} \\ $$$$\mathrm{x}\:=\:\left(\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{2m}+\mathrm{2}}{\mathrm{2m}−\mathrm{2}}\right)^{\mathrm{2}} \\ $$

Commented by MJS last updated on 16/Jun/20

your answer is only true for m=2

$$\mathrm{your}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{only}\:\mathrm{true}\:\mathrm{for}\:{m}=\mathrm{2} \\ $$

Commented by john santu last updated on 16/Jun/20

typo sir. your answer and my answer   is same

$$\mathrm{typo}\:\mathrm{sir}.\:\mathrm{your}\:\mathrm{answer}\:\mathrm{and}\:\mathrm{my}\:\mathrm{answer}\: \\ $$$$\mathrm{is}\:\mathrm{same} \\ $$

Commented by MJS last updated on 16/Jun/20

I see. but we need to restrict m like I showed

$$\mathrm{I}\:\mathrm{see}.\:\mathrm{but}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{restrict}\:{m}\:\mathrm{like}\:\mathrm{I}\:\mathrm{showed} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com