Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 98773 by john santu last updated on 16/Jun/20

if x is a selected number of the  number from 20−99, then what  is probalility x^3 −x is divided by  12?

ifxisaselectednumberofthenumberfrom2099,thenwhatisprobalilityx3xisdividedby12?

Answered by mr W last updated on 16/Jun/20

x^3 −x=(x−1)x(x+1)  x−1=12k ⇒x=12k+1, k=2..8  x=12k ⇒x=12k, k=2..8  x+1=12k ⇒x=12k−1, k=2..8  3×7=21 possible values for x  ⇒p=((21)/(80))

x3x=(x1)x(x+1)x1=12kx=12k+1,k=2..8x=12kx=12k,k=2..8x+1=12kx=12k1,k=2..83×7=21possiblevaluesforxp=2180

Commented by mr W last updated on 16/Jun/20

you are right sir!  p=((60)/(80))=(3/4)

youarerightsir!p=6080=34

Commented by mr W last updated on 16/Jun/20

case 1: x−1 is even, i.e. x is odd,  i.e. x=21, 23, ..., 99 ⇒ 40 numbers  case 2: x is divisible by 4,  i.e. x=20, 24, ..., 96 ⇒ 20 numbers  ⇒totally 60 values for x.

case1:x1iseven,i.e.xisodd,i.e.x=21,23,...,9940numberscase2:xisdivisibleby4,i.e.x=20,24,...,9620numberstotally60valuesforx.

Commented by john santu last updated on 16/Jun/20

yes. thank you friend

yes.thankyoufriend

Commented by MJS last updated on 16/Jun/20

x^3 −x is always divisible by 3  thus we only need to check which numbers  are divisible by 4

x3xisalwaysdivisibleby3thusweonlyneedtocheckwhichnumbersaredivisibleby4

Answered by MJS last updated on 16/Jun/20

n=x^3 −x=x(x−1)(x+1)  ⇒ 3∣n ∀x∈Z  ⇒  { ((x=2k+1 ⇒ 12∣n)),((x=2n ⇒  { ((x=4n ⇒ 12∣n)),((x=4n+2 ⇒ 12∤n)) :})) :}  ⇒ for 20≤x≤99 we have 20 numbers for  which 12∤n  ⇒ searched probability is (3/4)

n=x3x=x(x1)(x+1)3nxZ{x=2k+112nx=2n{x=4n12nx=4n+212nfor20x99wehave20numbersforwhich12nsearchedprobabilityis34

Commented by john santu last updated on 16/Jun/20

why the method mr W not same sir.  i got too((21)/(80))

whythemethodmrWnotsamesir.igottoo2180

Commented by MJS last updated on 16/Jun/20

n=x(x−1)(x+1)  x     n  20   12×665  21   12×770  22   10626  23   12×1012  24   12×1150  25   12×1300  26   17550  27   12×1638  28   12×1827  29   12×2030  ...

n=x(x1)(x+1)xn2012×6652112×77022106262312×10122412×11502512×130026175502712×16382812×18272912×2030...

Commented by bemath last updated on 16/Jun/20

for x =22 , 26 , ... not satisfy sir

forx=22,26,...notsatisfysir

Commented by bemath last updated on 16/Jun/20

30   30×29×31 ∤ 12  34    34×33×35 ∤12  38    38×37×39 ∤ 12  correct sir?

3030×29×31123434×33×35123838×37×3912correctsir?

Commented by MJS last updated on 16/Jun/20

yes

yes

Commented by john santu last updated on 16/Jun/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com