Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98826 by bramlex last updated on 16/Jun/20

Given ∫_0 ^∞  (dx/(a^2 +x^2 )) = (π/(2a))  find ∫_0 ^∞  (dx/((a^2 +x^2 )^3 )) ?

Given0dxa2+x2=π2afind0dx(a2+x2)3?

Commented by bemath last updated on 16/Jun/20

(d/da) [∫_0 ^∞  (dx/(a^2 +x^2 )) ] = (d/da) [(π/(2a)) ]  −2a ∫_0 ^∞  (dx/((a^2 +x^2 )^2 )) = ((−π)/(2a^2 ))  ∫_0 ^∞ (dx/((a^2 +x^2 )^2 )) = (π/(4a^3 ))  (d/da) [ ∫_0 ^∞  (dx/((a^2 +x^2 )^2 )) ] = (d/da) [(π/(4a^3 )) ]  −4a ∫_0 ^∞  (dx/((a^2 +x^2 )^3 )) = ((−3π)/(4a^4 ))  ∴ ∫_0 ^∞  (dx/((a^2 +x^2 )^3 )) = ((3π)/(16a^5 )) ■

dda[0dxa2+x2]=dda[π2a]2a0dx(a2+x2)2=π2a20dx(a2+x2)2=π4a3dda[0dx(a2+x2)2]=dda[π4a3]4a0dx(a2+x2)3=3π4a40dx(a2+x2)3=3π16a5

Commented by bramlex last updated on 16/Jun/20

greattt

greattt

Terms of Service

Privacy Policy

Contact: info@tinkutara.com