Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98914 by shaxzod last updated on 17/Jun/20

2x+3y=5  (x^2 +y^2 )_(min) =?

$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \underset{{min}} {\right)}=? \\ $$

Commented by john santu last updated on 17/Jun/20

y = ((5−2x)/3) ⇔y^2 = ((25−20x+4x^2 )/9)  let f(x)= x^2 +((25−20x+4x^2 )/9)  f ′(x) = 2x+((8x−20)/9) = 0  26x−20=0 ⇒x = ((10)/(13)) ⇔y=((5−((20)/(13)))/3)  y = ((45)/(3.13)) = ((15)/(13))  min {x^2 +y^2 } = ((325)/(169))

$$\mathrm{y}\:=\:\frac{\mathrm{5}−\mathrm{2x}}{\mathrm{3}}\:\Leftrightarrow\mathrm{y}^{\mathrm{2}} =\:\frac{\mathrm{25}−\mathrm{20x}+\mathrm{4x}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{25}−\mathrm{20x}+\mathrm{4x}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\mathrm{2x}+\frac{\mathrm{8x}−\mathrm{20}}{\mathrm{9}}\:=\:\mathrm{0} \\ $$$$\mathrm{26x}−\mathrm{20}=\mathrm{0}\:\Rightarrow\mathrm{x}\:=\:\frac{\mathrm{10}}{\mathrm{13}}\:\Leftrightarrow\mathrm{y}=\frac{\mathrm{5}−\frac{\mathrm{20}}{\mathrm{13}}}{\mathrm{3}} \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{45}}{\mathrm{3}.\mathrm{13}}\:=\:\frac{\mathrm{15}}{\mathrm{13}} \\ $$$$\mathrm{min}\:\left\{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right\}\:=\:\frac{\mathrm{325}}{\mathrm{169}} \\ $$

Commented by mr W last updated on 17/Jun/20

((325)/(169))=((25)/(13))=correct

$$\frac{\mathrm{325}}{\mathrm{169}}=\frac{\mathrm{25}}{\mathrm{13}}={correct} \\ $$

Answered by Farruxjano last updated on 17/Jun/20

Let′s use Cauchy−Shvarz:  5=2×x+3×y≤(√((2^2 +3^2 )(x^2 +y^2 )))  (√(13(x^2 +y^2 )))≥5 ⇒ x^2 +y^2 ≥((25)/(13))  Answer: (x^2 +y^2 )_(min) =((25)/(13))

$$\boldsymbol{{Let}}'\boldsymbol{{s}}\:\boldsymbol{{use}}\:\boldsymbol{{Cauchy}}−\boldsymbol{{Shvarz}}: \\ $$$$\mathrm{5}=\mathrm{2}×\boldsymbol{{x}}+\mathrm{3}×\boldsymbol{{y}}\leqslant\sqrt{\left(\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)} \\ $$$$\sqrt{\mathrm{13}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}\geqslant\mathrm{5}\:\Rightarrow\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \geqslant\frac{\mathrm{25}}{\mathrm{13}} \\ $$$$\boldsymbol{{Answer}}:\:\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)_{\boldsymbol{{min}}} =\frac{\mathrm{25}}{\mathrm{13}} \\ $$

Commented by john santu last updated on 17/Jun/20

with Lagrange multiplier  f(x,y,λ) = x^2 +y^2 +λ(2x+3y−5)  (∂f/∂x) = 2x+2λ = 0 , x=−λ  (∂f/∂y) = 2y+3λ = 0 , y=−(3/2)λ  we get 2x+3y=5  −2λ−(9/2)λ = 5 , λ = −((10)/(13))   { ((x = ((10)/(13)))),((y=−(3/2)×−((10)/(13)) = ((15)/(13)))) :}  min { x^2 +y^2  } = ((325)/(169))

$$\mathrm{with}\:\mathrm{Lagrange}\:\mathrm{multiplier} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y},\lambda\right)\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\lambda\left(\mathrm{2x}+\mathrm{3y}−\mathrm{5}\right) \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\:=\:\mathrm{2x}+\mathrm{2}\lambda\:=\:\mathrm{0}\:,\:\mathrm{x}=−\lambda \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\:=\:\mathrm{2y}+\mathrm{3}\lambda\:=\:\mathrm{0}\:,\:\mathrm{y}=−\frac{\mathrm{3}}{\mathrm{2}}\lambda \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{2x}+\mathrm{3y}=\mathrm{5} \\ $$$$−\mathrm{2}\lambda−\frac{\mathrm{9}}{\mathrm{2}}\lambda\:=\:\mathrm{5}\:,\:\lambda\:=\:−\frac{\mathrm{10}}{\mathrm{13}} \\ $$$$\begin{cases}{\mathrm{x}\:=\:\frac{\mathrm{10}}{\mathrm{13}}}\\{\mathrm{y}=−\frac{\mathrm{3}}{\mathrm{2}}×−\frac{\mathrm{10}}{\mathrm{13}}\:=\:\frac{\mathrm{15}}{\mathrm{13}}}\end{cases} \\ $$$$\mathrm{min}\:\left\{\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\right\}\:=\:\frac{\mathrm{325}}{\mathrm{169}} \\ $$$$ \\ $$

Answered by maths mind last updated on 17/Jun/20

2x+3y≤(√(4+9)).(√(x^2 +y^2 ))  ⇔(x^2 +y^2 )^(1/2) ≥(5/(√(13)))⇒x^2 +y^2 ≥((25)/(13))=((25.13)/(13.13))=((325)/(169))  {x^2 +y^2 }_(min) =((25)/(13))

$$\mathrm{2}{x}+\mathrm{3}{y}\leqslant\sqrt{\mathrm{4}+\mathrm{9}}.\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \geqslant\frac{\mathrm{5}}{\sqrt{\mathrm{13}}}\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \geqslant\frac{\mathrm{25}}{\mathrm{13}}=\frac{\mathrm{25}.\mathrm{13}}{\mathrm{13}.\mathrm{13}}=\frac{\mathrm{325}}{\mathrm{169}} \\ $$$$\left\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}_{{min}} =\frac{\mathrm{25}}{\mathrm{13}} \\ $$

Answered by mr W last updated on 17/Jun/20

(x^2 +y^2 )_(min) =d^2 =((∣2×0+3×0−5∣^2 )/(2^2 +3^2 ))=((25)/(13))

$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \underset{{min}} {\right)}={d}^{\mathrm{2}} =\frac{\mid\mathrm{2}×\mathrm{0}+\mathrm{3}×\mathrm{0}−\mathrm{5}\mid^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\frac{\mathrm{25}}{\mathrm{13}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com