Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98942 by mathmax by abdo last updated on 17/Jun/20

calculate ∫ ((x+1−(√(2x+3)))/(x−2 +(√(x+1)))) dx

calculatex+12x+3x2+x+1dx

Commented by MJS last updated on 17/Jun/20

Sir Abdo, do you have an easy solution?  I can solve it but the constants are getting  horrible...

SirAbdo,doyouhaveaneasysolution?Icansolveitbuttheconstantsaregettinghorrible...

Commented by mathmax by abdo last updated on 18/Jun/20

use hyperbolic function sir.

usehyperbolicfunctionsir.

Answered by 4635 last updated on 17/Jun/20

⇔∫((x+1)/(x−2+(√(x+1))))dx−∫((√(2x+3))/(x−2+(√(x+1))))dx

x+1x2+x+1dx2x+3x2+x+1dx

Commented by 4635 last updated on 17/Jun/20

posons k=∫((x+1)/(x−2+(√(x+1))))dx et  d=∫((√(2x+3))/(x−2+(√(x+1))))dx

posonsk=x+1x2+x+1dxetd=2x+3x2+x+1dx

Commented by 4635 last updated on 17/Jun/20

on a: ∫((x+1)/(x−2+(√(x+1))))dx  put t^2 =x+1 ⇒2tdt=dx  ∫((2t^3 )/(t^2 −3+t))dt ⇒∫((2t^3 )/(t^2 +t−3))dt   =∫((2t^3 )/((t+(1/2))^2 −(((√7)/2))^2 ))dt  let u=t+(1/2) ⇒du=dt  ⇒2∫(((u−(1/2))^3 )/(u^2 −(((√7)/2))^2 ))du=∫((u^3 −((3u^2 )/2)+((3u)/4)−(1/8))/(u^2 −(((√7)/2))^2 ))du

ona:x+1x2+x+1dxputt2=x+12tdt=dx2t3t23+tdt2t3t2+t3dt=2t3(t+12)2(72)2dtletu=t+12du=dt2(u12)3u2(72)2du=u33u22+3u418u2(72)2du

Answered by MJS last updated on 17/Jun/20

∫((x+1−(√(2x+3)))/(x−2+(√(x+1))))dx=  =∫((x+1)/(x−2+(√(x+1))))dx−∫((√(2x+3))/(x−2+(√(x+1))))dx  ∫((x+1)/(x−2+(√(x+1))))dx=       [t=(√(x+1)) → dx=2(√(x+1))dt]  =2∫(t^3 /(t^2 +t−3))dt=2(∫tdt−∫dt+∫((4t−3)/(t^2 +t−3))dt)=  =t(t−2)+(4/(13))((26+5(√(13)))∫(dt/(2t+1+(√(13))))+(26−5(√(13)))∫(dt/(2t+1−(√(13)))))  and these are easy to solve  −∫((√(2x+3))/(x−2+(√(x+1))))dx=−∫(((x−2−(√(x+1)))(√(2x+3)))/(x^2 −5x+3))dx=  =−∫(((x−2)(√(2x+3)))/(x^2 −5x+3))dx+∫(((√(x+1))(√(2x+3)))/(x^2 −5x+3))dx  −∫(((x−2)(√(2x+3)))/(x^2 −5x+3))dx=       [u=(√(2x+3)) → dx=(√(2x+3))du]  =−2∫((u^2 (u^2 −7))/(u^4 −16u^2 +51))du       u^4 −16u^2 +51=(u−α)(u+α)(u−β)(u+β)       α, β ∈R       ⇒ we can easily solve this by decomposing  ∫(((√(x+1))(√(2x+3)))/(x^2 −5x+3))dx=       [v=((√(2(x+1)))/(√(2x+3))) → dx=(√(2(x+1)(2x+3)^3 ))dv]  =2(√2)∫(v^2 /((v^2 −1)(51v^4 −86v^2 +36)))dv       51v^4 −86v^2 +36=51(v−γ)(v+γ)(v−δ)(v+γ)       γ, δ ∈R       ⇒ again easy to solve  ...but I′m not eager for typing the constants...

x+12x+3x2+x+1dx==x+1x2+x+1dx2x+3x2+x+1dxx+1x2+x+1dx=[t=x+1dx=2x+1dt]=2t3t2+t3dt=2(tdtdt+4t3t2+t3dt)==t(t2)+413((26+513)dt2t+1+13+(26513)dt2t+113)andtheseareeasytosolve2x+3x2+x+1dx=(x2x+1)2x+3x25x+3dx==(x2)2x+3x25x+3dx+x+12x+3x25x+3dx(x2)2x+3x25x+3dx=[u=2x+3dx=2x+3du]=2u2(u27)u416u2+51duu416u2+51=(uα)(u+α)(uβ)(u+β)α,βRwecaneasilysolvethisbydecomposingx+12x+3x25x+3dx=[v=2(x+1)2x+3dx=2(x+1)(2x+3)3dv]=22v2(v21)(51v486v2+36)dv51v486v2+36=51(vγ)(v+γ)(vδ)(v+γ)γ,δRagaineasytosolve...butImnoteagerfortypingtheconstants...

Commented by mathmax by abdo last updated on 18/Jun/20

thank you sir mjs.

thankyousirmjs.

Answered by mathmax by abdo last updated on 18/Jun/20

I =∫  ((x+1−(√(2x+3)))/(x−2+(√(x+1)))) dx ⇒ I =∫ ((x+1)/(x−2+(√(x+1))))dx −∫ ((√(2x+3))/(x−2+(√(x+1))))dx =H−K  changement (√(x+1))=t give x+1 =t^2  ⇒  H =∫  (t^2 /(t^2 −1−2+t))(2t)dt = 2 ∫  (t^3 /(t^2  +t−3))dt  =2 ∫ ((t(t^2 +t−3)−t^2 +3t)/(t^2 +t−3))dt = 2 ∫ tdt +2 ∫ ((−t^2  +3t)/(t^2  +t−3))dt  =t^2  −2 ∫  ((t^2 −3t)/(t^2  +t−3))dt  =t^2 −2 ∫ ((t^2  +t−3 −t+3−3t)/(t^2  +t−3))dt =t^2 −2t +2∫ ((4t−3)/(t^2  +t−3))dt  t^2  +t−3 =0→Δ =1+12 =13 ⇒t_1 =((−1+(√(13)))/2) and t_2 =((−1−(√(13)))/2)  f(t) =((4t−3)/(t^2 +t−3)) =((4t−3)/((t−t_1 )(t−t_2 ))) =(a/(t−t_1 )) +(b/(t−t_2 )) ⇒eazy to find a and b ⇒  ∫ f(t)dt =aln∣t−t_1 ∣ +bln∣t−t_2 ∣ +c ⇒  H =x+1−2(√(x+1)) +2aln∣(√(x+1))−t_1 ∣ +2b ln∣(√(x+1))−t_2 ∣ +c  K =∫  ((√(2x+3))/(x−2+(√(x+1))))dt  changement  (√(x+1))=t give x+1 =t^2   K =∫  ((√(2(t^2 −1)+3))/(t^2 −1−2 +t))(2t)dt =2 ∫  ((√(2t^2 +1))/(t^2  +t−3))tdt  =2 ∫  ((t(√(2(t^2  +(1/2)))))/(t^2  +t−3))dt =2(√2) ∫  ((t(√(t^2  +(1/2))))/(t^2  +t−3))dt  we do the changement   t =(1/(√2))shu ⇒ K =(√2) ∫    ((shu×chu)/((1/2)sh^2 u +(1/(√2))shu −3))((1/(√2)))chu du  =∫  ((2shu ch^2 u)/(sh^2 u +(√2)shu −6)) du   this integrale is solvable ...be continued...

I=x+12x+3x2+x+1dxI=x+1x2+x+1dx2x+3x2+x+1dx=HKchangementx+1=tgivex+1=t2H=t2t212+t(2t)dt=2t3t2+t3dt=2t(t2+t3)t2+3tt2+t3dt=2tdt+2t2+3tt2+t3dt=t22t23tt2+t3dt=t22t2+t3t+33tt2+t3dt=t22t+24t3t2+t3dtt2+t3=0Δ=1+12=13t1=1+132andt2=1132f(t)=4t3t2+t3=4t3(tt1)(tt2)=att1+btt2eazytofindaandbf(t)dt=alntt1+blntt2+cH=x+12x+1+2alnx+1t1+2blnx+1t2+cK=2x+3x2+x+1dtchangementx+1=tgivex+1=t2K=2(t21)+3t212+t(2t)dt=22t2+1t2+t3tdt=2t2(t2+12)t2+t3dt=22tt2+12t2+t3dtwedothechangementt=12shuK=2shu×chu12sh2u+12shu3(12)chudu=2shuch2ush2u+2shu6duthisintegraleissolvable...becontinued...

Commented by MJS last updated on 18/Jun/20

this leads to a polynome of 4^(th)  degree in the  denominator, too. we can solve it but the  constants are horrible also

thisleadstoapolynomeof4thdegreeinthedenominator,too.wecansolveitbuttheconstantsarehorriblealso

Terms of Service

Privacy Policy

Contact: info@tinkutara.com