Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 98944 by mathmax by abdo last updated on 17/Jun/20

let g(x) =((cosx +1)/(cos(2x)−3))  developp f at fourier serie

letg(x)=cosx+1cos(2x)3developpfatfourierserie

Answered by mathmax by abdo last updated on 18/Jun/20

g(x) =((cosx+1)/(cos(2x)−3)) =((((e^(ix)  +e^(−ix) )/2)+1)/(((e^(2ix) +e^(−i2x) )/2)−3)) =((e^(ix) +e^(−ix)  +2)/(e^(i2x) +e^(−i2x) −6))  changement e^(ix)  =z give g(x) =((z+z^(−1)  +2)/(z^2  +z^(−2)  −6)) =((z^3  +z +2z^2 )/(z^4  +1−6z^2 ))  =((z^3  +2z^2  +z)/(z^4 −6z^2  +1)) =f(z)  let decompose f  z^4 −6z^2  +1 =0→u^2 −6u +1 =0 →Δ^′  =9−1 =8 ⇒  u_1 =3+2(√2) and u_2 =3−2(√2) ⇒f(z) =((z^3  +2z^2 +z)/((z^2 −u_1 )(z^2 −u_2 )))  =(z^3  +2z^2  +z)((1/(z^2 −u_1 ))−(1/(z^2 −u_2 ))) =((z^3  +2z^2  +z)/(z^2 −u_1 ))−((z^3  +2z^2  +z)/(z^2 −u_2 )) =ϕ_1 (z)−ϕ_2 (z)  ϕ_1 (z) =((z(z^2 −u_1 )+zu_1 +2z^2  +z)/(z^2 −u_1 )) =z  +((2z^2  +(1+u_1 )z)/(z^2  −u_1 ))  =z +((2(z^2 −u_1 )+2u_1 +(1+u_1 )z)/(z^2 −u_1 )) =z+2 +(((1+u_1 )z +2u_1 )/(z^2 −u_1 ))  ϕ_2 (z) =z+2 +(((1+u_2 )z +2u_2 )/(z^2 −u_2 )) ⇒f(z) =(((1+u_1 )z +2u_1 )/(z^2 −u_1 ))−(((1+u_2 )z +2u_2 )/(z^2  −u_2 ))  f(z) =(((1+u_2 )z +2u_2 )/(u_2 −z^2 ))−(((1+u_1 )z +2u_1 )/(u_1 −z^2 )) =(1/u_2 )×(((1+u_2 )z+2u_2 )/(1−((z/(√u_2 )))^2 ))  −(1/u_1 )×(((1+u_1 )z+2u_1 )/(1−((z/(√u_1 )))^2 )) so if ∣z∣ <inf((√u_1 ),(√u_2 )) weget   f(z) =(1/u_2 ){(1+u_2 )z +2u_2 }Σ_(n=0) ^∞  (z^(2n) /u_2 ^n ) −(1/u_1 ){ (1+u_1 )z +2u_1 }Σ_(n=0) ^∞  (z^(2n) /u_1 ^n )  =(1/(3−2(√2))){(4−2(√2))z +6−4(√2)}Σ_(n=0) ^∞  (e^(2inx) /((3−2(√2))^n ))  −(1/(3+2(√2))){ (4+2(√2))+6+4(√2)}Σ_(n=0) ^∞  (e^(2inx) /((3+2(√2))^n ))

g(x)=cosx+1cos(2x)3=eix+eix2+1e2ix+ei2x23=eix+eix+2ei2x+ei2x6changementeix=zgiveg(x)=z+z1+2z2+z26=z3+z+2z2z4+16z2=z3+2z2+zz46z2+1=f(z)letdecomposefz46z2+1=0u26u+1=0Δ=91=8u1=3+22andu2=322f(z)=z3+2z2+z(z2u1)(z2u2)=(z3+2z2+z)(1z2u11z2u2)=z3+2z2+zz2u1z3+2z2+zz2u2=φ1(z)φ2(z)φ1(z)=z(z2u1)+zu1+2z2+zz2u1=z+2z2+(1+u1)zz2u1=z+2(z2u1)+2u1+(1+u1)zz2u1=z+2+(1+u1)z+2u1z2u1φ2(z)=z+2+(1+u2)z+2u2z2u2f(z)=(1+u1)z+2u1z2u1(1+u2)z+2u2z2u2f(z)=(1+u2)z+2u2u2z2(1+u1)z+2u1u1z2=1u2×(1+u2)z+2u21(zu2)21u1×(1+u1)z+2u11(zu1)2soifz<inf(u1,u2)wegetf(z)=1u2{(1+u2)z+2u2}n=0z2nu2n1u1{(1+u1)z+2u1}n=0z2nu1n=1322{(422)z+642}n=0e2inx(322)n13+22{(4+22)+6+42}n=0e2inx(3+22)n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com