All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 98952 by Ar Brandon last updated on 17/Jun/20
WithoutusingL′Hopital^′sruleorMaclaurin′sexpansionseries,findlimx→0xexex−1−1x
Commented by 675480065 last updated on 17/Jun/20
letf(x)=xexex−1−1andg(x)=xfromtaylorseriesexpansionex=1+x+x22+0(x2)⇒xex=x+x2+x32+0(x3)ex−1=1+x+x22+0(x2)−1=x+x22+0(x2)⇒f(x)=[x(1+x+x22+0(x2))x(1+x2+0(x))]−1⇒f(x)=[1+x+x22−1−x2+0(x2)(1+x2+0(x))]=[x+x2+0(x2)(2+x+0(x))]limx→0(f(x)g(x))=limx→0[1+x+0(x)2+x+0(x)]=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com