Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 98952 by Ar Brandon last updated on 17/Jun/20

Without using L′Ho^� pital′s rule or Maclaurin′s expansion  series, find lim_(x→0) ((((xe^x )/(e^x −1))−1)/x)

$$\mathrm{Without}\:\mathrm{using}\:\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}'\mathrm{s}\:\mathrm{rule}\:\mathrm{or}\:\mathrm{Maclaurin}'\mathrm{s}\:\mathrm{expansion} \\ $$$$\mathrm{series},\:\mathrm{find}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{xe}^{\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}−\mathrm{1}}{\mathrm{x}} \\ $$

Commented by 675480065 last updated on 17/Jun/20

let f(x)=((xe^x )/(e^x −1))−1 and g(x)=x  from taylor series expansion  e^x =1+x+(x^2 /2)+0(x^2 )⇒xe^x =x+x^2 +(x^3 /2)+0(x^3 )  e^x −1=1+x+(x^2 /2)+0(x^2 )−1=x+(x^2 /2)+0(x^2 )  ⇒f(x)=[((x(1+x+(x^2 /2)+0(x^2 )))/(x(1+(x/2)+0(x))))]−1  ⇒f(x)=[((1+x+(x^2 /2)−1−(x/2)+0(x^2 ))/((1+(x/2)+0(x))))]=[((x+x^2 +0(x^2 ))/((2+x+0(x))))]  lim_(x→0) (((f(x))/(g(x))))=lim_(x→0) [((1+x+0(x))/(2+x+0(x)))]=(1/2)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{xe}^{\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}−\mathrm{1}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x} \\ $$$$\mathrm{from}\:\mathrm{taylor}\:\mathrm{series}\:\mathrm{expansion} \\ $$$$\mathrm{e}^{\mathrm{x}} =\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}^{\mathrm{2}} \right)\Rightarrow\mathrm{xe}^{\mathrm{x}} =\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}^{\mathrm{3}} \right) \\ $$$$\mathrm{e}^{\mathrm{x}} −\mathrm{1}=\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}^{\mathrm{2}} \right)−\mathrm{1}=\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\left[\frac{\mathrm{x}\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}^{\mathrm{2}} \right)\right)}{\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}\right)\right)}\right]−\mathrm{1} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\left[\frac{\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{1}−\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{0}\left(\mathrm{x}\right)\right)}\right]=\left[\frac{\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\mathrm{0}\left(\mathrm{x}^{\mathrm{2}} \right)}{\left(\mathrm{2}+\mathrm{x}+\mathrm{0}\left(\mathrm{x}\right)\right)}\right] \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{g}\left(\mathrm{x}\right)}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\mathrm{1}+\mathrm{x}+\mathrm{0}\left(\mathrm{x}\right)}{\mathrm{2}+\mathrm{x}+\mathrm{0}\left(\mathrm{x}\right)}\right]=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com