Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 98953 by Ar Brandon last updated on 17/Jun/20

Given f(x)=sin^2 x find the expansion of f(x)  up to the n^(th)  term.

$$\mathcal{G}\mathrm{iven}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{find}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}. \\ $$

Answered by mr W last updated on 17/Jun/20

f(x)=sin^2  x=(1/2)(1−cos 2x)  =(1/2)−(1/2)(1−(((2x)^2 )/(2!))+(((2x)^4 )/(4!))−...)  =(1/2)−Σ_(n=0) ^∞ (((−1)^n 2^(2n−1) x^(2n) )/((2n)!))

$${f}\left({x}\right)=\mathrm{sin}^{\mathrm{2}} \:{x}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\left(\mathrm{2}{x}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left(\mathrm{2}{x}\right)^{\mathrm{4}} }{\mathrm{4}!}−...\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} {x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$

Answered by mathmax by abdo last updated on 17/Jun/20

f(x) =Σ_(k=0) ^n  ((f^((k)) (0))/(k!)) x^k  +....we have f(x)=sin^2 x ⇒f^′ (x) =2sinx cosx ⇒  f^((k)) (x) =2(sinxcosx)^((k−1))  =2 Σ_(p=0) ^(k−1)  C_(k−1) ^p  sin^((p)) (x)cos^((k−p)) (x)  f^((k)) (x) =2 Σ_(p=0) ^(k−1)  sin(x+((pπ)/2))cos(x+(((k−p)π)/2)) ⇒  f^((k)) (0) =2 Σ_(p=0) ^(k−1)  sin(((pπ)/2))cos((((k−p)π)/2)) ⇒  sin^2 x =2Σ_(k=1) ^n  (1/(k!)) (Σ_(p=0) ^(k−1)  sin(((pπ)/2))cos((((k−p)π)/2))) x^k  +....

$$\mathrm{f}\left(\mathrm{x}\right)\:=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\frac{\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{0}\right)}{\mathrm{k}!}\:\mathrm{x}^{\mathrm{k}} \:+....\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\mathrm{2sinx}\:\mathrm{cosx}\:\Rightarrow \\ $$$$\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}\right)\:=\mathrm{2}\left(\mathrm{sinxcosx}\right)^{\left(\mathrm{k}−\mathrm{1}\right)} \:=\mathrm{2}\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{k}−\mathrm{1}} \:\mathrm{C}_{\mathrm{k}−\mathrm{1}} ^{\mathrm{p}} \:\mathrm{sin}^{\left(\mathrm{p}\right)} \left(\mathrm{x}\right)\mathrm{cos}^{\left(\mathrm{k}−\mathrm{p}\right)} \left(\mathrm{x}\right) \\ $$$$\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}\right)\:=\mathrm{2}\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{k}−\mathrm{1}} \:\mathrm{sin}\left(\mathrm{x}+\frac{\mathrm{p}\pi}{\mathrm{2}}\right)\mathrm{cos}\left(\mathrm{x}+\frac{\left(\mathrm{k}−\mathrm{p}\right)\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$$\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{0}\right)\:=\mathrm{2}\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{k}−\mathrm{1}} \:\mathrm{sin}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\left(\mathrm{k}−\mathrm{p}\right)\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:=\mathrm{2}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{k}!}\:\left(\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{k}−\mathrm{1}} \:\mathrm{sin}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\left(\mathrm{k}−\mathrm{p}\right)\pi}{\mathrm{2}}\right)\right)\:\mathrm{x}^{\mathrm{k}} \:+.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com