Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 99077 by Mr.D.N. last updated on 18/Jun/20

Commented by MJS last updated on 18/Jun/20

the colour is nice but hard to read...

$$\mathrm{the}\:\mathrm{colour}\:\mathrm{is}\:\mathrm{nice}\:\mathrm{but}\:\mathrm{hard}\:\mathrm{to}\:\mathrm{read}... \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jun/20

Then it′s not nice here! Main  purpose is to be read. Isn′t it?  :)

$$\mathcal{T}{hen}\:{it}'{s}\:{not}\:{nice}\:{here}!\:{Main} \\ $$$$\left.{purpose}\:{is}\:{to}\:{be}\:{read}.\:{Isn}'{t}\:{it}?\:\::\right) \\ $$

Answered by mathmax by abdo last updated on 18/Jun/20

b) I =∫((x^2  +x+1)/(√(1−x^2 ))) dx changement x =sint give  I =∫ ((sin^2 t +sint +1)/(cost))cost dt =∫ (sin^2 t+sint +1)dt  =∫ ((1−cos(2t))/2)dt  −cost +t  =(t/2) −(1/4)sin(2t)−cost +t +c  =(3/2)t −(1/2)sint cost −cost +c =(3/2) arcsinx −(x/2)(√(1−x^2 )) −(√(1−x^2 )) +c

$$\left.\mathrm{b}\right)\:\mathrm{I}\:=\int\frac{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:\mathrm{changement}\:\mathrm{x}\:=\mathrm{sint}\:\mathrm{give} \\ $$$$\mathrm{I}\:=\int\:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{t}\:+\mathrm{sint}\:+\mathrm{1}}{\mathrm{cost}}\mathrm{cost}\:\mathrm{dt}\:=\int\:\left(\mathrm{sin}^{\mathrm{2}} \mathrm{t}+\mathrm{sint}\:+\mathrm{1}\right)\mathrm{dt} \\ $$$$=\int\:\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2t}\right)}{\mathrm{2}}\mathrm{dt}\:\:−\mathrm{cost}\:+\mathrm{t} \\ $$$$=\frac{\mathrm{t}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\left(\mathrm{2t}\right)−\mathrm{cost}\:+\mathrm{t}\:+\mathrm{c} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{t}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sint}\:\mathrm{cost}\:−\mathrm{cost}\:+\mathrm{c}\:=\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{arcsinx}\:−\frac{\mathrm{x}}{\mathrm{2}}\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:+\mathrm{c} \\ $$

Commented by Mr.D.N. last updated on 18/Jun/20

thanks to your pleasure time.✍��

Commented by mathmax by abdo last updated on 18/Jun/20

you are welcome .

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:. \\ $$

Answered by mathmax by abdo last updated on 18/Jun/20

a) at form of serie  I =∫ ((xe^x )/((x+1)^2 ))dx  changement x+1 =t give  I =∫ (((t−1)e^(t−1) )/t^2 )dt =(1/e) ∫(((t−1))/t^2 ) e^t  dt  =(1/e) ∫ ((1/t)−(1/t^2 ))Σ_(n=0) ^∞  (t^n /(n!))dt =(1/e) Σ_(n=0) ^∞  (1/(n!))∫(t^(n−1) −t^(n−2) )dt  =(1/e) Σ_(n=2) ^∞  (1/(n!))((t^n /n)−(t^(n−1) /(n−1))) +(1/e)∫ ((1/t)−(1/t^2 ))dt +(1/e)∫(1−(1/t))dt  =(1/e) Σ_(n=2) ^∞  (t^n /(n(n!)))−(1/e)Σ_(n=2) ^∞  (t^(n−1) /((n−1)n!)) +((ln∣t∣)/e) +(1/(et)) +(t/e)−((ln∣t∣)/e)  =(1/e) Σ_(n=2) ^∞  (((x+1)^n )/(n(n!))) −(1/e) Σ_(n=2) ^∞  (((x+1)^(n−1) )/((n−1)n!)) +(1/(e(x+1))) +((x+1)/e)

$$\left.\mathrm{a}\right)\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie}\:\:\mathrm{I}\:=\int\:\frac{\mathrm{xe}^{\mathrm{x}} }{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{changement}\:\mathrm{x}+\mathrm{1}\:=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{I}\:=\int\:\frac{\left(\mathrm{t}−\mathrm{1}\right)\mathrm{e}^{\mathrm{t}−\mathrm{1}} }{\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{e}}\:\int\frac{\left(\mathrm{t}−\mathrm{1}\right)}{\mathrm{t}^{\mathrm{2}} }\:\mathrm{e}^{\mathrm{t}} \:\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{e}}\:\int\:\left(\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}!}\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{e}}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}!}\int\left(\mathrm{t}^{\mathrm{n}−\mathrm{1}} −\mathrm{t}^{\mathrm{n}−\mathrm{2}} \right)\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{e}}\:\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}!}\left(\frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}}−\frac{\mathrm{t}^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}−\mathrm{1}}\right)\:+\frac{\mathrm{1}}{\mathrm{e}}\int\:\left(\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)\mathrm{dt}\:+\frac{\mathrm{1}}{\mathrm{e}}\int\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{t}}\right)\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{e}}\:\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}\left(\mathrm{n}!\right)}−\frac{\mathrm{1}}{\mathrm{e}}\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{n}−\mathrm{1}\right)\mathrm{n}!}\:+\frac{\mathrm{ln}\mid\mathrm{t}\mid}{\mathrm{e}}\:+\frac{\mathrm{1}}{\mathrm{et}}\:+\frac{\mathrm{t}}{\mathrm{e}}−\frac{\mathrm{ln}\mid\mathrm{t}\mid}{\mathrm{e}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{e}}\:\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}\left(\mathrm{n}!\right)}\:−\frac{\mathrm{1}}{\mathrm{e}}\:\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{n}−\mathrm{1}\right)\mathrm{n}!}\:+\frac{\mathrm{1}}{\mathrm{e}\left(\mathrm{x}+\mathrm{1}\right)}\:+\frac{\mathrm{x}+\mathrm{1}}{\mathrm{e}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com