Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 99113 by mathmax by abdo last updated on 18/Jun/20

solve y^(′′)  +5y^′  −3y =x^2  sin(3x)  with y(0) =0 and y^′ (0)=−1

solvey+5y3y=x2sin(3x)withy(0)=0andy(0)=1

Answered by mathmax by abdo last updated on 19/Jun/20

(he)→y^(′′)  +5y^′ −3y =0 →r^2  +5y −3 =0  Δ =25+12 =37 ⇒r_1 =((−5+(√(37)))/2) and r_2 =((−5−(√(37)))/2) ⇒y_h =α e^(r_1 x)  +β e^(r_2 x)   =α u_1  +βu_2   W(u_1  ,u_2 ) = determinant (((e^(r_1 x)             e^(r_2 x) )),((r_1 e^(r_1 x)        r_2 e^(r_2 x) )))=(r_2 −r_1 ) e^((r_1  +r_2 )x)    =−(√(37)) e^(−5x)    W_1 = determinant (((0                                e^(r_2 x) )),((x^2  sin(3x)          r_2 e^(r_2 x) )))=−x^2  sin(3x)e^(r_2 x)   W_2 = determinant (((e^(r_1 x)                      0)),((r_1 e^(r_1 x)     x^2 sin(3x))))=x^2  sin(3x)e^(r_1 x)   v_1 =∫ ((W1)/W)dx =∫  ((−x^2  sin(3x)e^(r_2 x) )/(−(√(37))e^(−5x) ))dx =(1/(√(37))) ∫ x^2  sin(3x) e^((5+r_2 )x)   dx  =(1/(√(37))) Im(∫ x^2  e^((3i+5+r_2 )x) dx) =....  v_2 =∫ (W_2 /W)dx =∫  ((x^2  sin(3x)e^(r_1 x) )/(−(√(37))e^(−5x) ))dx =−(1/(√(37))) ∫ x^2  sin(3x)e^((5+r_1 )x)  dx  =−(1/(√(37))) Im( ∫ x^2  e^((3i+5+r_1 )x)  dx) =.... ⇒  y_p =u_1 v_1  +u_2 v_2  and general solution is y =αe^(r_1 x)  +βe^(r_2 x)  +y_p

(he)y+5y3y=0r2+5y3=0Δ=25+12=37r1=5+372andr2=5372yh=αer1x+βer2x=αu1+βu2W(u1,u2)=|er1xer2xr1er1xr2er2x|=(r2r1)e(r1+r2)x=37e5xW1=|0er2xx2sin(3x)r2er2x|=x2sin(3x)er2xW2=|er1x0r1er1xx2sin(3x)|=x2sin(3x)er1xv1=W1Wdx=x2sin(3x)er2x37e5xdx=137x2sin(3x)e(5+r2)xdx=137Im(x2e(3i+5+r2)xdx)=....v2=W2Wdx=x2sin(3x)er1x37e5xdx=137x2sin(3x)e(5+r1)xdx=137Im(x2e(3i+5+r1)xdx)=....yp=u1v1+u2v2andgeneralsolutionisy=αer1x+βer2x+yp

Answered by mathmax by abdo last updated on 20/Jun/20

let take a try with laplace transform  e ⇒L(y^(′′) )+5L(y^′ )−3L(y) =L(x^2  sin(3x)) ⇒  x^2  L(y)−xy(0)−y^′ (0)+5(x L(y)−y(0))−3L(y) =L(x^2  sin(3x)) ⇒  (x^2  +5x−3)L(y) +1 =L(x^2  sin(3x) we have   L(x^2  sin(3x)) =∫_0 ^∞  t^2  sin(3t) e^(−xt)  dt =Im(∫_0 ^∞  t^2  e^((3i−x)t)  dt)  ∫_0 ^∞  t^2  e^((−x+3i)t)  dt =[(t^2 /(−x+3i)) e^((−x+3i)t) ]_0 ^(+∞)  −∫_0 ^∞  ((2t)/(−x+3i)) e^((−x+3i)t)  dt  =(2/(x−3i)) ∫_0 ^∞   t e^((−x+3i)t)  dt =(2/(x−3i)){ [(t/(−x+3i)) e^((−x+3i)t) ]_0 ^(+∞)  −∫_0 ^∞  (1/(−x+3i)) e^((−x+3i)t)  dt}  =(2/(x−3i))×(1/(x−3i)) ∫_0 ^∞  e^((−x+3i)t)  dt =(2/((x−3i)^2 ))×[(1/(−x+3i)) e^((−x+3i)t) ]_0 ^(+∞)   =(2/((x−3i)^3 )) =((2(x+3i)^3 )/((x^2  +9)^3 )) =((2(x^3  +3x^2 (3i)+3x(3i)^2 +(3i)^3 ))/((x^2  +9)^3 ))  =((2(x^3 +9ix^2  −27x −27i))/((x^2  +9)^3 )) ⇒Im(...) =((2(9x^2 −27))/((x^2  +9)^3 ))  e ⇒(x^2 +5x−3)L(y) =−1 +((18x^3 −54)/((x^2  +9)^3 )) ⇒  L(y) =−(1/(x^2  +5x−3)) +((18x^3  −54)/((x^2  +5x−3)(x^2 +9)^3 )) ⇒  y(x) =−L^(−1) ((1/(x^2  +5x −3)))+L^(−1) (((18x^3  −54)/((x^2 +5x−3)(x^2  +9)^3 )))...be continued....

lettakeatrywithlaplacetransformeL(y)+5L(y)3L(y)=L(x2sin(3x))x2L(y)xy(0)y(0)+5(xL(y)y(0))3L(y)=L(x2sin(3x))(x2+5x3)L(y)+1=L(x2sin(3x)wehaveL(x2sin(3x))=0t2sin(3t)extdt=Im(0t2e(3ix)tdt)0t2e(x+3i)tdt=[t2x+3ie(x+3i)t]0+02tx+3ie(x+3i)tdt=2x3i0te(x+3i)tdt=2x3i{[tx+3ie(x+3i)t]0+01x+3ie(x+3i)tdt}=2x3i×1x3i0e(x+3i)tdt=2(x3i)2×[1x+3ie(x+3i)t]0+=2(x3i)3=2(x+3i)3(x2+9)3=2(x3+3x2(3i)+3x(3i)2+(3i)3)(x2+9)3=2(x3+9ix227x27i)(x2+9)3Im(...)=2(9x227)(x2+9)3e(x2+5x3)L(y)=1+18x354(x2+9)3L(y)=1x2+5x3+18x354(x2+5x3)(x2+9)3y(x)=L1(1x2+5x3)+L1(18x354(x2+5x3)(x2+9)3)...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com