Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 99118 by pticantor last updated on 18/Jun/20

Answered by mathmax by abdo last updated on 18/Jun/20

1)  let p(x) =Σ_(k=1) ^n  x^k  ⇒p^′ (x) =Σ_(k=1) ^n  kx^(k−1)  ⇒Σ_(k=1) ^n  k x^(k−1) =  =(d/dx)( ((x^n −1)/(x−1))−1) =((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^n  k 2^(k−1)  =n 2^(n+1) −(n+1)2^n  +1  =(2n−n−1)2^n  +1 =(n−1)2^n  +1

1)letp(x)=k=1nxkp(x)=k=1nkxk1k=1nkxk1==ddx(xn1x11)=nxn+1(n+1)xn+1(x1)2k=1nk2k1=n2n+1(n+1)2n+1=(2nn1)2n+1=(n1)2n+1

Answered by mathmax by abdo last updated on 18/Jun/20

b) Σ_(k=1) ^n  k(n−k) =n Σ_(k=1) ^n  k−Σ_(k=1) ^n  k^2   =n((n(n+1))/2)−((n(n+1)(2n+1))/6) =((n(n+1))/2){n−((2n+1)/3)}  =((n(n+1))/2)(((n−1)/3)) =((n(n+1)(n−1))/6)

b)k=1nk(nk)=nk=1nkk=1nk2=nn(n+1)2n(n+1)(2n+1)6=n(n+1)2{n2n+13}=n(n+1)2(n13)=n(n+1)(n1)6

Answered by mathmax by abdo last updated on 19/Jun/20

2) Σ_(n=1) ^∞  (1/(n(n+1))) =lim_(n→+∞) Σ_(k=1) ^n ((1/k)−(1/(k+1))) =lim_(n→+∞) (1−(1/(n+1))) =1

2)n=11n(n+1)=limn+k=1n(1k1k+1)=limn+(11n+1)=1

Answered by mathmax by abdo last updated on 19/Jun/20

2^(b))  let S_n =Σ_(k=1) ^n  (1/(k(k+1)(k+2)))  let decompose F(x) =(1/(x(x+1)(x+2)))  F(x) =(a/x) +(b/(x+1)) +(c/(x+2))  a =(1/(2  ))  ,b =−1  , c =(1/2) ⇒F(x) =(1/(2x))−(1/(x+1)) +(1/(2(x+2))) ⇒  S_n =Σ_(k=1) ^n  (1/(2k))−Σ_(k=1) ^n  (1/(k+1)) +Σ_(k=1) ^n  (1/(2(k+2)))  we have  Σ_(k=1) ^n  (1/k) =H_n    , Σ_(k=1) ^n  (1/(k+1)) =Σ_(k=2) ^(n+1)  (1/k) =H_(n+1) −1  Σ_(k=1) ^n  (1/(k+2)) =Σ_(k=3) ^(n+2)  (1/k) =H_(n+2) −(3/2) ⇒S_n =(1/2)H_n  −H_(n+1)  +1+(1/2)H_(n+2) −(3/4)  =(1/2)(H_n +H_(n+2) )−H_(n+1) +(1/4) =(1/2)(ln(n)+γ +ln(n+2)+γ +o((1/n))  −ln(n+1)−γ−o((1/(n+1))) +(1/4) =ln((√(n^2  +2n)))−ln(n+1)+(1/4) +o((1/n))  =ln(((√(n^2  +2n))/(n+1)))+(1/4) +o((1/n)) →(1/4) ⇒lim_(n→+∞)  S_n =(1/4)

2b)letSn=k=1n1k(k+1)(k+2)letdecomposeF(x)=1x(x+1)(x+2)F(x)=ax+bx+1+cx+2a=12,b=1,c=12F(x)=12x1x+1+12(x+2)Sn=k=1n12kk=1n1k+1+k=1n12(k+2)wehavek=1n1k=Hn,k=1n1k+1=k=2n+11k=Hn+11k=1n1k+2=k=3n+21k=Hn+232Sn=12HnHn+1+1+12Hn+234=12(Hn+Hn+2)Hn+1+14=12(ln(n)+γ+ln(n+2)+γ+o(1n)ln(n+1)γo(1n+1)+14=ln(n2+2n)ln(n+1)+14+o(1n)=ln(n2+2nn+1)+14+o(1n)14limn+Sn=14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com