Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99120 by  M±th+et+s last updated on 18/Jun/20

prove that:  ∫_(−(1/2)) ^∞ e^(−(4x^6 +12x^5 +15x^4 +10x^3 +4x^2 +x)) dx  =((e)^(1/8) /3)[((Γ((1/6))^((−1)/2) )/(2(2)^(1/3) ))1F2(_(1/3,2/3) ^(1/6) ∣((−1)/(69/2)) ) +((Γ(5/6))/(128(4)^(1/3) ))1F2(_(4/3,5/3) ^(5/6) ∣((−1)/(69/2))) −((√π)/(16))12(_(2/3,4/3) ^(1/2) ∣((−1)/(69/2)))

provethat:12e(4x6+12x5+15x4+10x3+4x2+x)dx=e83[Γ(16)122231F2(1/3,2/31/6169/2)+Γ(5/6)128431F2(4/3,5/35/6169/2)π1612(2/3,4/31/2169/2)

Commented by  M±th+et+s last updated on 18/Jun/20

I=(((e)^(1/8) .π(√π))/(2(4)^(1/3) (3)^(1/6) ))[(Ai(((−1)/(8(6)^(1/3) ))))^2 +(Bi(((−1)/(8(6)^(1/3) ))))^2 ]

I=e8.ππ24336[(Ai(1863))2+(Bi(1863))2]

Commented by  M±th+et+s last updated on 18/Jun/20

Ai(z) : Airy function  Bi(z): Airy Bi function  1F2: is hyper geometric function  Γ(s):gamma function

Ai(z):AiryfunctionBi(z):AiryBifunction1F2:ishypergeometricfunctionΓ(s):gammafunction

Terms of Service

Privacy Policy

Contact: info@tinkutara.com