Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99146 by mathmax by abdo last updated on 18/Jun/20

1) explicit f(a) =∫_1 ^(√3)   arctan((a/x))dx  with a>0  2) calculate ∫_1 ^(√3)  arctan((2/x))dx and ∫_1 ^(√3)   arctan((3/x))dx

1)explicitf(a)=13arctan(ax)dxwitha>0 2)calculate13arctan(2x)dxand13arctan(3x)dx

Answered by mathmax by abdo last updated on 19/Jun/20

1) f(a) =∫_1 ^(√3)  arctan((a/x))dx by parts we get  f(a) =[xarctan((a/x))]_1 ^(√3)   −∫_1 ^(√3)   x(−(a/x^2 ))×(1/(1+(a^2 /x^2 ))) dx  =(√3)arctan((a/(√3)))−arctan(a) +∫_1 ^(√3)     ((ax)/(x^2  +a^2 )) dx  but  ∫_1 ^(√3)    ((ax)/(x^2  +a^2 )) dx =_(x=au)    ∫_(1/a) ^((√3)/a)  ((a(au))/(a^2 (1+u^2 ))) adu =a ∫_(1/a) ^((√3)/a)  ((udu)/(1+u^2 ))  =(a/2)[ln(1+u^2 )]_(1/a) ^((√3)/a)  =(a/2){ln(1+(3/a^2 ))−ln(1+(1/a^2 ))} =(a/2)ln(((a^2  +3)/(a^2  +1))) ⇒  f(a) =(√3)arctan((a/(√3)))−arctan(a)+(a/2)ln(((3+a^2 )/(1+a^2 )))  2)∫_1 ^(√3)  artan((2/x))dx =f(2) =(√3) arctan((2/(√3)))−arctan(2)+ln((7/5))  ∫_1 ^(√3)  arctan((3/x))dx =f(3) =(√3) arctan((√3))−arctan(3)+(3/2)ln((6/5))

1)f(a)=13arctan(ax)dxbypartsweget f(a)=[xarctan(ax)]1313x(ax2)×11+a2x2dx =3arctan(a3)arctan(a)+13axx2+a2dxbut 13axx2+a2dx=x=au1a3aa(au)a2(1+u2)adu=a1a3audu1+u2 =a2[ln(1+u2)]1a3a=a2{ln(1+3a2)ln(1+1a2)}=a2ln(a2+3a2+1) f(a)=3arctan(a3)arctan(a)+a2ln(3+a21+a2) 2)13artan(2x)dx=f(2)=3arctan(23)arctan(2)+ln(75) 13arctan(3x)dx=f(3)=3arctan(3)arctan(3)+32ln(65)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com