All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 99146 by mathmax by abdo last updated on 18/Jun/20
1)explicitf(a)=∫13arctan(ax)dxwitha>0 2)calculate∫13arctan(2x)dxand∫13arctan(3x)dx
Answered by mathmax by abdo last updated on 19/Jun/20
1)f(a)=∫13arctan(ax)dxbypartsweget f(a)=[xarctan(ax)]13−∫13x(−ax2)×11+a2x2dx =3arctan(a3)−arctan(a)+∫13axx2+a2dxbut ∫13axx2+a2dx=x=au∫1a3aa(au)a2(1+u2)adu=a∫1a3audu1+u2 =a2[ln(1+u2)]1a3a=a2{ln(1+3a2)−ln(1+1a2)}=a2ln(a2+3a2+1)⇒ f(a)=3arctan(a3)−arctan(a)+a2ln(3+a21+a2) 2)∫13artan(2x)dx=f(2)=3arctan(23)−arctan(2)+ln(75) ∫13arctan(3x)dx=f(3)=3arctan(3)−arctan(3)+32ln(65)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com