Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99168 by bemath last updated on 19/Jun/20

Answered by Kunal12588 last updated on 19/Jun/20

I=∫_0 ^( π/2) ((xcos x)/(1+sin^2  x))dx  ⇒I=∫_0 ^( π/2)  (((π/2)cos x)/(1+sin^2  x))dx−∫_0 ^( π/2) ((xcos x)/(1+sin^2  x))dx  ⇒2I=(π/2)∫_0 ^( π/2) ((cos x)/(1+sin^2  x))dx  ⇒I=−(π/4)∫_0 ^( π/2) ((d(sin x))/(1+sin^2  x))  ⇒I=−(π/4)tan^(−1) (sin (π/2))=−(π/4)tan^(−1) (1)  ⇒I=−(π^2 /(16))

$${I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{{x}\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx} \\ $$$$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\frac{\left(\pi/\mathrm{2}\right)\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx}−\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{{x}\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx} \\ $$$$\Rightarrow\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx} \\ $$$$\Rightarrow{I}=−\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{{d}\left(\mathrm{sin}\:{x}\right)}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}} \\ $$$$\Rightarrow{I}=−\frac{\pi}{\mathrm{4}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right)=−\frac{\pi}{\mathrm{4}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right) \\ $$$$\Rightarrow{I}=−\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$

Commented by mathmax by abdo last updated on 19/Jun/20

miss kunal if yiu have done the changement x=(π/2)−t we get  I =∫_0 ^(π/2)  ((((π/2)−t)sint)/(1+cos^2 t))dt =(π/2) ∫_0 ^(π/2)  ((sint)/(1+cos^2 t))dt −∫_0 ^(π/2)  ((tsint)/(1+cos^2 t)) dt   how ∫_0 ^(π/2)  ((xcosx)/(1+sin^2 x))dx =∫_0 ^(π/2)  ((xsinx)/(1+cos^2 x))dx ?

$$\mathrm{miss}\:\mathrm{kunal}\:\mathrm{if}\:\mathrm{yiu}\:\mathrm{have}\:\mathrm{done}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}=\frac{\pi}{\mathrm{2}}−\mathrm{t}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\left(\frac{\pi}{\mathrm{2}}−\mathrm{t}\right)\mathrm{sint}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{t}}\mathrm{dt}\:=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sint}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{t}}\mathrm{dt}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{tsint}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{t}}\:\mathrm{dt}\: \\ $$$$\mathrm{how}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{xcosx}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{xsinx}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com