Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 99237 by abdomathmax last updated on 19/Jun/20

calculate lim_(n→+∞)      Σ_(k=1) ^n   ((√(kn))/((k^2  +n^2 )))

calculatelimn+k=1nkn(k2+n2)

Answered by Ar Brandon last updated on 19/Jun/20

l=lim_(n→∞) Σ_(k=1) ^n ((√(kn))/((k^2 +n^2 )))=lim_(n→∞) Σ_(k=1) ^n ((√((kn^2 )/n))/((k^2 +n^2 )))=lim_(n→∞) (n/n^2 )Σ_(n→∞) ^n ((√(k/n))/([(k^2 /n^2 )+1]))    =∫_1 ^2 ((√x)/(x^2 +1))dx  , t^2 =x⇒2tdt=dx  ⇒l=∫_1 ^(√2) ((2t^2 )/(t^4 +1))dt=∫_1 ^(√2) (((t^2 +1)+(t^2 −1))/(t^4 +1))dt=∫_1 ^(√2) ((t^2 +1)/(t^4 +1))dt+∫_1 ^(√2) ((t^2 −1)/(t^4 +1))dt        =∫_1 ^(√2) ((1+(1/t^2 ))/(t^2 +(1/t^2 )))dt+∫_1 ^(√2) ((1−(1/t^2 ))/(t^2 +(1/t^2 )))dt=∫_1 ^(√2) ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt+∫_1 ^(√2) ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt  u=t−(1/t)⇒du=(1+(1/t^2 ))dt,  v=t+(1/t)⇒dv=(1−(1/t^2 ))dt  ⇒l=∫_0 ^(1/(√2)) (du/(u^2 +2))+∫_2 ^(3/(√2)) (dv/(v^2 −2))=[(1/(√2))tan^(−1) ((u/(√2)))]_0 ^(1/(√2)) −[(1/(√2))tanh^(−1) ((v/(√2)))]_2 ^(3/(√2))   ⇒l=(1/(√2))[tan^(−1) ((1/2))]−(1/(√2))[tanh^(−1) ((3/2))−tanh^(−1) ((√2))]  undefined { (),() :}f(x)=tanh^(−1) x⇒x∈]−1,1[

l=limnnk=1kn(k2+n2)=limnnk=1kn2n(k2+n2)=limnnn2nnkn[k2n2+1]=12xx2+1dx,t2=x2tdt=dxl=122t2t4+1dt=12(t2+1)+(t21)t4+1dt=12t2+1t4+1dt+12t21t4+1dt=121+1t2t2+1t2dt+1211t2t2+1t2dt=121+1t2(t1t)2+2dt+1211t2(t+1t)22dtu=t1tdu=(1+1t2)dt,v=t+1tdv=(11t2)dtl=012duu2+2+232dvv22=[12tan1(u2)]012[12tanh1(v2)]232l=12[tan1(12)]12[tanh1(32)tanh1(2)]undefined{f(x)=tanh1xx]1,1[

Commented by abdomathmax last updated on 19/Jun/20

thanks sir.

thankssir.

Commented by mathmax by abdo last updated on 21/Jun/20

oo yes you are right ...

ooyesyouareright...

Commented by mathmax by abdo last updated on 21/Jun/20

t+(1/t) =v ⇒ ∫_0 ^1  ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt =−∫_2 ^∞  (dv/(v^2 −2)) =−(1/(2(√2)))∫_2 ^∞  ((1/(v−(√2)))−(1/(v+(√2))))dv  =−(1/(2(√2)))[ln∣((v−(√2))/(v+(√2)))∣]_2 ^∞  =(1/(2(√2)))ln(((2−(√2))/(2+(√2)))) ⇒  I =(π/(2(√2))) +(1/(2(√2)))ln(((2−(√2))/(2+(√2))))

t+1t=v0111t2(t+1t)22dt=2dvv22=1222(1v21v+2)dv=122[lnv2v+2]2=122ln(222+2)I=π22+122ln(222+2)

Commented by mathmax by abdo last updated on 20/Jun/20

s =lim_(n→+∞)     (1/n)Σ_(k=1) ^n   ((√(k/n))/(1+((k/n))^2 )) =∫_0 ^(1 )  ((√x)/(1+x^2 )) dx  =_((√x)=t)   ∫_0 ^(1 )   (t/(1+t^4 ))(2t)dt =2 ∫_0 ^1  (t^2 /(1+t^4 ))dt  but  ∫_0 ^1  (t^2 /(1+t^4 )) =∫_0 ^1  (1/((1/t^2 )+t^2 )) dt =(1/2)∫_0 ^1  ((1+(1/t^2 )+1−(1/t^2 ))/(t^2  +(1/t^2 ))) dt  =(1/2) ∫_0 ^1  ((1+(1/t^2 ))/((t−(1/t))^2  +2))dt(t−(1/t)=−u) +(1/2)∫_0 ^1  ((1−(1/t^2 ))/((t+(1/t))^2 −2))(t+(1/t)=−v)  =−(1/2)∫_0 ^∞   ((−du)/(u^2  +2))  −(1/2)∫_0 ^∞   ((−dv)/(v^2 −2)) =(1/2) ∫_0 ^∞  (du/(u^2  +2)) +(1/2)∫_0 ^∞  (dv/(v^2 −2)) we hsve  ∫_0 ^∞  (du/(u^2  +2)) =_(u=(√2)α)   ∫_0 ^∞  (((√2)dα)/(2(1+α^2 ))) =(1/(√2))×(π/2) =(π/(2(√2)))  ∫_0 ^∞   (dv/(v^2 −2)) =(1/4)∫_0 ^∞ ((1/(v−2))−(1/(v+2)))dv =(1/4)[ln∣((v−2)/(v+2))∣]_0 ^∞  =(1/4)×0=0 ⇒  s =(π/(√2))

s=limn+1nk=1nkn1+(kn)2=01x1+x2dx=x=t01t1+t4(2t)dt=201t21+t4dtbut01t21+t4=0111t2+t2dt=12011+1t2+11t2t2+1t2dt=12011+1t2(t1t)2+2dt(t1t=u)+120111t2(t+1t)22(t+1t=v)=120duu2+2120dvv22=120duu2+2+120dvv22wehsve0duu2+2=u=2α02dα2(1+α2)=12×π2=π220dvv22=140(1v21v+2)dv=14[lnv2v+2]0=14×0=0s=π2

Commented by Ar Brandon last updated on 21/Jun/20

How did you obtain your limits for v?  I thought it was supposed to range from 2 to −∞

Howdidyouobtainyourlimitsforv?Ithoughtitwassupposedtorangefrom2to

Terms of Service

Privacy Policy

Contact: info@tinkutara.com