Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99239 by abdomathmax last updated on 19/Jun/20

calculate ∫_2 ^(+∞)  (dx/(x^3 (x^2 −1)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Answered by MJS last updated on 19/Jun/20

Ostrogradski gives  −((2x^2 −1)/(2x^2 (x^2 −1)))−2∫(dx/(x(x^2 −1)))=  =−((2x^2 −1)/(2x^2 (x^2 −1)))+ln ∣(x^2 /(x^2 −1))∣ +C  ⇒  ∫_2 ^∞ (dx/(x^3 (x^2 −1)))=(7/(24))+ln (3/4)

$$\mathrm{Ostrogradski}\:\mathrm{gives} \\ $$$$−\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}−\mathrm{2}\int\frac{{dx}}{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}= \\ $$$$=−\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}+\mathrm{ln}\:\mid\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{1}}\mid\:+{C} \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{2}} {\overset{\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}=\frac{\mathrm{7}}{\mathrm{24}}+\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Commented by Ar Brandon last updated on 20/Jun/20

Hello Mr MJS,�� greetings to you Sir.

Commented by MJS last updated on 20/Jun/20

also back to you!

Answered by mathmax by abdo last updated on 21/Jun/20

I =∫_2 ^(+∞)  (dx/(x^3 (x^2 −1)^2 )) ⇒ I =∫_2 ^∞  (dx/(((x/(x−1)))^3  (x−1)^5 (x+1)^2 ))  we do the changement (x/(x−1)) =t ⇒x =tx−t ⇒(1−t)x =−t ⇒x =(t/(t−1))  ⇒(dx/dt) =(1+(1/(t−1)))^′  =−(1/((t−1)^2 )) and x−1 =(t/(t−1))−1 =((t−t+1)/(t−1)) =(1/(t−1))  x+1 =(t/(t−1)) +1 =((t+t−1)/(t−1)) =((2t−1)/(t−1)) ⇒  I =−∫_1 ^2   ((−dt)/((t−1)^2 t^3 ((1/(t−1)))^5 (((2t−1)/(t−1)))^2 )) =∫_1 ^2  (((t−1)^7 )/((t−1)^2  t^3 (2t−1)^2 ))dt  =∫_1 ^2  (((t−1)^5 )/(t^3 (2t−1)^2 ))dt =∫_1 ^2  ((Σ_(k=0) ^5  C_5 ^k  t^k (−1)^(5−k) )/(t^3 (2t−1)^2 ))dt  =−Σ_(k=0) ^5  C_5 ^k  (−1)^k  ∫_1 ^2  (t^k /(t^3 (2t−1)^2 ))dt  after we decompose F(t) =(t^k /(t^3 (2t−1)^2 ))  ...be continued...

$$\mathrm{I}\:=\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{2}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{3}} \:\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\:=\mathrm{t}\:\Rightarrow\mathrm{x}\:=\mathrm{tx}−\mathrm{t}\:\Rightarrow\left(\mathrm{1}−\mathrm{t}\right)\mathrm{x}\:=−\mathrm{t}\:\Rightarrow\mathrm{x}\:=\frac{\mathrm{t}}{\mathrm{t}−\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{dx}}{\mathrm{dt}}\:=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}\right)^{'} \:=−\frac{\mathrm{1}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{and}\:\mathrm{x}−\mathrm{1}\:=\frac{\mathrm{t}}{\mathrm{t}−\mathrm{1}}−\mathrm{1}\:=\frac{\mathrm{t}−\mathrm{t}+\mathrm{1}}{\mathrm{t}−\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}} \\ $$$$\mathrm{x}+\mathrm{1}\:=\frac{\mathrm{t}}{\mathrm{t}−\mathrm{1}}\:+\mathrm{1}\:=\frac{\mathrm{t}+\mathrm{t}−\mathrm{1}}{\mathrm{t}−\mathrm{1}}\:=\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{t}−\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{I}\:=−\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{−\mathrm{dt}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \mathrm{t}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}\right)^{\mathrm{5}} \left(\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{t}−\mathrm{1}}\right)^{\mathrm{2}} }\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{7}} }{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{5}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt}\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{5}} \:\mathrm{C}_{\mathrm{5}} ^{\mathrm{k}} \:\mathrm{t}^{\mathrm{k}} \left(−\mathrm{1}\right)^{\mathrm{5}−\mathrm{k}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt} \\ $$$$=−\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{5}} \:\mathrm{C}_{\mathrm{5}} ^{\mathrm{k}} \:\left(−\mathrm{1}\right)^{\mathrm{k}} \:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{t}^{\mathrm{k}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt}\:\:\mathrm{after}\:\mathrm{we}\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{t}\right)\:=\frac{\mathrm{t}^{\mathrm{k}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$...\mathrm{be}\:\mathrm{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com