Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 99257 by peter frank last updated on 19/Jun/20

Answered by Ar Brandon last updated on 19/Jun/20

1a\log_(ab) x=((log_x x)/(log_x ab))=(1/(log_x a+log_x b))=(1/(((log_a a)/(log_a x))+((log_b b)/(log_b x))))                       =(1/((1/(log_a x))+(1/(log_b x))))=(1/({((log_b x+log_a x)/((log_a x)(log_b x)))}))                       =(((log_a x)(log_b x))/(log_a x+log_b x))

1alogabx=logxxlogxab=1logxa+logxb=1logaalogax+logbblogbx=11logax+1logbx=1{logbx+logax(logax)(logbx)}=(logax)(logbx)logax+logbx

Answered by mahdi last updated on 20/Jun/20

1)log_(ab) x=(1/(log_x ab))=(1/(1og_x a+log_x b))=  (1/((1/(log_a x))+(1/(log_b x))))=((log_b x.log_a x)/(1og_b x+log_a x))  (not=((log_b x−log_a x)/(log_b x+log_a x)))  2)2log(a+b)=log(a^2 +b^2 +2ab)=  log(a^2 ×(1+(b^2 /a^2 )+((2b)/a)))=2loga+log(1+(b^2 /a^2 )+((2b)/a))  (not log_c )  3)=log_2 (((sinx)/(cosx(1−tanx)(1+tanx))))=  log_2 (((sinx)/(cosx(1−tan^2 x))))=log_2 (((sinx)/(cosx−tanxsinx)))  log_2 (((sinxcosx)/(cos^2 x−sin^2 x)))=log_2 ((((1/2)×sin(2x))/(cos(2x))))=  log_2 (tan(2x))−1

1)logabx=1logxab=11ogxa+logxb=11logax+1logbx=logbx.logax1ogbx+logax(not=logbxlogaxlogbx+logax)2)2log(a+b)=log(a2+b2+2ab)=log(a2×(1+b2a2+2ba))=2loga+log(1+b2a2+2ba)(notlogc)3)=log2(sinxcosx(1tanx)(1+tanx))=log2(sinxcosx(1tan2x))=log2(sinxcosxtanxsinx)log2(sinxcosxcos2xsin2x)=log2(12×sin(2x)cos(2x))=log2(tan(2x))1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com