Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 99260 by Ar Brandon last updated on 19/Jun/20

Solve the differential equation   xy′−y+((2x+1)/((x+1)^2 ))=0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{xy}'−\mathrm{y}+\frac{\mathrm{2x}+\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$

Answered by Mr.D.N. last updated on 19/Jun/20

Commented by Ar Brandon last updated on 20/Jun/20

Thank you ��

Answered by mathmax by abdo last updated on 19/Jun/20

xy^′  −y +((2x+1)/((x+1)^2 )) =0  (he)→xy^′ −y =0 ⇒(y^′ /y) =(1/x) ⇒ln∣y∣ =ln∣x∣ +c ⇒  y(x) =k ∣x∣  let determine slution on ]0,+∞[ ⇒y(x) =kx  mvc  method →y^′  =k^′  x +k  (e) ⇒k^′  x^2  +kx −kx =−((2x+1)/((x+1)^2 )) ⇒k^′  =−((2x+1)/(x^2 (x+1)^2 )) ⇒k(x) =−∫((2x+1)/(x^2 (x+1)^2 ))dx +c  let decompose F(x) =((2x+1)/(x^2 (x+1)^2 )) we have (1/x^2 )−(1/((x+1)^2 )) =(((x+1)^2 −x^2 )/(x^2 (x+1)^2 ))  =((2x+1)/(x^2 (x+1)^2 )) =F(x) ⇒k(x) =−∫(dx/x^2 ) +∫ (dx/((x+1)^2 )) =(1/x)−(1/(x+1)) +c ⇒  y(x) =xk(x) =x((1/x)−(1/(x+1)) +c) =1−(x/(x+1)) +c =(1/(x+1)) +c

$$\mathrm{xy}^{'} \:−\mathrm{y}\:+\frac{\mathrm{2x}+\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{0}\:\:\left(\mathrm{he}\right)\rightarrow\mathrm{xy}^{'} −\mathrm{y}\:=\mathrm{0}\:\Rightarrow\frac{\mathrm{y}^{'} }{\mathrm{y}}\:=\frac{\mathrm{1}}{\mathrm{x}}\:\Rightarrow\mathrm{ln}\mid\mathrm{y}\mid\:=\mathrm{ln}\mid\mathrm{x}\mid\:+\mathrm{c}\:\Rightarrow \\ $$$$\left.\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{k}\:\mid\mathrm{x}\mid\:\:\mathrm{let}\:\mathrm{determine}\:\mathrm{slution}\:\mathrm{on}\:\right]\mathrm{0},+\infty\left[\:\Rightarrow\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{kx}\right. \\ $$$$\mathrm{mvc}\:\:\mathrm{method}\:\rightarrow\mathrm{y}^{'} \:=\mathrm{k}^{'} \:\mathrm{x}\:+\mathrm{k} \\ $$$$\left(\mathrm{e}\right)\:\Rightarrow\mathrm{k}^{'} \:\mathrm{x}^{\mathrm{2}} \:+\mathrm{kx}\:−\mathrm{kx}\:=−\frac{\mathrm{2x}+\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\mathrm{k}^{'} \:=−\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\mathrm{k}\left(\mathrm{x}\right)\:=−\int\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}\:+\mathrm{c} \\ $$$$\mathrm{let}\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)\:=\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{F}\left(\mathrm{x}\right)\:\Rightarrow\mathrm{k}\left(\mathrm{x}\right)\:=−\int\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} }\:+\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:+\mathrm{c}\:\Rightarrow \\ $$$$\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{xk}\left(\mathrm{x}\right)\:=\mathrm{x}\left(\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:+\mathrm{c}\right)\:=\mathrm{1}−\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\:+\mathrm{c}\:=\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:+\mathrm{c} \\ $$

Commented by mathmax by abdo last updated on 19/Jun/20

sorry y(x) =(1/(x+1)) +cx

$$\mathrm{sorry}\:\mathrm{y}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:+\mathrm{cx} \\ $$

Commented by Ar Brandon last updated on 20/Jun/20

Thanks

Commented by mathmax by abdo last updated on 20/Jun/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com