Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 99300 by mr W last updated on 20/Jun/20

Find  Σ_(n=1) ^∞ (1/((3n)!))=?

Findn=11(3n)!=?

Answered by maths mind last updated on 20/Jun/20

Z^3 −1=0⇒z∈{1,e^((2iπ)/3) ,e^((4iπ)/3) }  e^z =Σ_(n≥0) (z^n /(n!)),a=e^((2iπ)/3) ,b=e^((4iπ)/3) ,c=1  e^a +e^b +e^c =Σ_(n≥0) ((1+e^((2inπ)/3) +e^((4inπ)/3) )/(n!))  =Σ_(j=0) ^2 .Σ_(n≥0) ((1+e^((2i(3n+j)π)/3) +e^((4i(3n+j)π)/3) )/((3n+j)!))  =Σ_(n≥0) (3/((3n)!))+Σ_(n≥0) ((1+e^((2iπ)/3) +e^((4iπ)/3) )/((3n+1)!))+Σ((1+e^((4iπ)/3) +e^((8iπ)/3) )/((3n+2)!))  1+e^((2iπ)/3) +e^((4iπ)/3) =0,((8π)/3)=2π+((2π)/3)⇒1+e^((4iπ)/3) +e^(((8π)/3)i) =0  ⇒e+e^e^((2iπ)/3)  +e^e^((4iπ)/3)  =3Σ_(n≥0) (1/((3n)!))=3(Σ_(n≥1) (1/((3n)!))+1)  Σ_(n≥1) (1/((3n)!))=((e+e^e^((2iπ)/3)  +e^e^(4((iπ)/3))  )/3)−1

Z31=0z{1,e2iπ3,e4iπ3}ez=n0znn!,a=e2iπ3,b=e4iπ3,c=1ea+eb+ec=n01+e2inπ3+e4inπ3n!=2j=0.n01+e2i(3n+j)π3+e4i(3n+j)π3(3n+j)!=n03(3n)!+n01+e2iπ3+e4iπ3(3n+1)!+Σ1+e4iπ3+e8iπ3(3n+2)!1+e2iπ3+e4iπ3=0,8π3=2π+2π31+e4iπ3+e8π3i=0e+ee2iπ3+ee4iπ3=3n01(3n)!=3(n11(3n)!+1)n11(3n)!=e+ee2iπ3+ee4iπ331

Commented by mr W last updated on 20/Jun/20

thanks sir! let me study!

thankssir!letmestudy!

Commented by maths mind last updated on 20/Jun/20

nice day  sir  withe pleasur

nicedaysirwithepleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com