All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 99357 by bobhans last updated on 20/Jun/20
x2+xy+y2−3y=10,findthevalueofdydxatx=2
Commented by bemath last updated on 20/Jun/20
x=2⇒4+2y+y2−3y−10=0y2−y−6=0⇒{y=3y=−2implicitdifferentiate2x+y+xdydx+2ydydx−3dydx=02x+y+(x−3+2y)dydx=0for(2,3)⇒4+3+(2−3+6)dydx=0dydx=−75for(2,−2)⇒4−2+(2−3−4)dydx=0dydx=−2(−5)=25
Answered by mathmax by abdo last updated on 20/Jun/20
x2+y2+xy−3y=10⇒y2+(x−3)y+x2−10=0Δ=(x−3)2−4(x2−10)=x2−6x+9−4x2+40=−3x2−6x+49forΔ⩾0wegety1=3−x+−3x2−6x+492andy2=3−x−−3x2−6x+492y=y1⇒y′=−12+12×−6x−62−3x2−6x+49=−12−3x+32−3x2−6x+49y′(2)=−12−92−12−12+49=−12−910=−5−910=−1410=−75y=y2⇒y′=−12−12×−6x−62−3x2−6x+49=−12+123x+3−3x2−6x+49⇒y′(2)=−12+92×5=−12+910=−5+910=410=25
Terms of Service
Privacy Policy
Contact: info@tinkutara.com