Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 99357 by bobhans last updated on 20/Jun/20

x^2 +xy +y^2 −3y = 10 , find the value of  (dy/dx) at x= 2

x2+xy+y23y=10,findthevalueofdydxatx=2

Commented by bemath last updated on 20/Jun/20

x=2 ⇒4+2y+y^2 −3y−10=0  y^2 −y−6=0 ⇒ { ((y=3)),((y=−2)) :}  implicit differentiate   2x +y+x(dy/dx)+2y(dy/dx)−3(dy/dx) = 0  2x+y+(x−3+2y) (dy/dx) = 0  for (2,3) ⇒4+3+(2−3+6) (dy/dx) = 0  (dy/dx) = −(7/5)  for (2,−2)⇒4−2+(2−3−4) (dy/dx) = 0  (dy/dx) = ((−2)/((−5))) = (2/5)

x=24+2y+y23y10=0y2y6=0{y=3y=2implicitdifferentiate2x+y+xdydx+2ydydx3dydx=02x+y+(x3+2y)dydx=0for(2,3)4+3+(23+6)dydx=0dydx=75for(2,2)42+(234)dydx=0dydx=2(5)=25

Answered by mathmax by abdo last updated on 20/Jun/20

x^2  +y^2  +xy−3y =10 ⇒y^2  +(x−3)y +x^2 −10 =0  Δ =(x−3)^2 −4(x^2 −10) =x^2 −6x +9−4x^2  +40 =−3x^2 −6x +49  for Δ≥0 we get  y_1 =((3−x+(√(−3x^2 −6x +49)))/2)  and y_2 =((3−x−(√(−3x^2 −6x +49)))/2)  y=y_1  ⇒y^′  =−(1/2) +(1/2)×((−6x−6)/(2(√(−3x^2 −6x+49)))) =−(1/2)−((3x+3)/(2(√(−3x^2 −6x+49))))  y^′ (2) =−(1/2)−(9/(2(√(−12−12+49)))) =−(1/2)−(9/(10)) =((−5−9)/(10)) =((−14)/(10)) =−(7/5)  y =y_2 ⇒y^′  =−(1/2)−(1/2)×((−6x−6)/(2(√(−3x^2 −6x+49)))) =−(1/2) +(1/2)((3x+3)/(√(−3x^2 −6x+49))) ⇒  y^′ (2) =−(1/2) +(9/(2×5)) =−(1/2) +(9/(10)) =((−5+9)/(10)) =(4/(10)) =(2/5)

x2+y2+xy3y=10y2+(x3)y+x210=0Δ=(x3)24(x210)=x26x+94x2+40=3x26x+49forΔ0wegety1=3x+3x26x+492andy2=3x3x26x+492y=y1y=12+12×6x623x26x+49=123x+323x26x+49y(2)=12921212+49=12910=5910=1410=75y=y2y=1212×6x623x26x+49=12+123x+33x26x+49y(2)=12+92×5=12+910=5+910=410=25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com