All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 99385 by Ar Brandon last updated on 20/Jun/20
Provesin4A=38−12cos2A+18cos4A
Answered by Ar Brandon last updated on 20/Jun/20
|zn−1zn=2isin(nA),zn+1zn=2cos(nA)⇒(z−1z)4=(2isinA)4⇒(z4+1z4)−4(z2+1z2)+6=16sin4A⇒16sin4A=2cos4A−8cos2A+6⇒sin4A=38−12cos2A+18cos4A|
Answered by 1549442205 last updated on 21/Jun/20
sin4A=(sin2A)2=(1−cos2A2)2=1−2cos2A+cos22A4=14−12cos2A+14×1+cos4A2=38−12cos2A+18cos4A
Terms of Service
Privacy Policy
Contact: info@tinkutara.com