Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 99433 by Dwaipayan Shikari last updated on 20/Jun/20

sin7φ+cos2φ=−2  Find,φ

sin7ϕ+cos2ϕ=2Find,ϕ

Commented by bobhans last updated on 21/Jun/20

sin 7∅+sin (90−2∅)=−2  2sin (((90+5∅)/2)) cos (((9∅−90)/2)) = −2  sin (((90+5∅)/2)) cos (((9∅−90)/2)) = −1  case (1)    { ((sin (((90+5∅)/2)) = −1)),((cos (((9∅−90)/2)) = 1)) :}  case(2)   { ((sin (((90+5∅)/2)) = 1)),((cos (((9∅−90)/2)) = −1)) :}

sin7+sin(902)=22sin(90+52)cos(9902)=2sin(90+52)cos(9902)=1case(1){sin(90+52)=1cos(9902)=1case(2){sin(90+52)=1cos(9902)=1

Answered by mr W last updated on 21/Jun/20

sin 7φ=−1 & cos 2φ=−1  7φ=2mπ−(π/2) ⇒φ=((2mπ)/7)−(π/(14))  2φ=2nπ+π ⇒φ=nπ+(π/2)  nπ+(π/2)=((2mπ)/7)−(π/(14))  2m−7n=4  ⇒n=2k  ⇒φ=2kπ+(π/2)

sin7ϕ=1&cos2ϕ=17ϕ=2mππ2ϕ=2mπ7π142ϕ=2nπ+πϕ=nπ+π2nπ+π2=2mπ7π142m7n=4n=2kϕ=2kπ+π2

Commented by Rio Michael last updated on 21/Jun/20

have a little problem, how did you arrive at the   conclusion sin 7∅ = −1 and cos 2∅ = −1

havealittleproblem,howdidyouarriveattheconclusionsin7=1andcos2=1

Commented by ChristopherPeter last updated on 21/Jun/20

jjn

Commented by floor(10²Eta[1]) last updated on 21/Jun/20

    it′s the only possible cases, since  sina and cosb are between −1 and 1

itstheonlypossiblecases,sincesinaandcosbarebetween1and1

Commented by mr W last updated on 21/Jun/20

exactly!  if A≥−1, B≥−1 and  if A+B=−2 then A=−1 and B=−1.

exactly!ifA1,B1andifA+B=2thenA=1andB=1.

Commented by 1549442205 last updated on 21/Jun/20

because  { ((sin7φ≥−1)),((cos2φ≥−1)) :}   which implies that sin7φ+cos2φ≥−2.  Hence,sin7φ+cos2φ=−2 if and only if   { ((sin7φ=−1)),((cos2φ=−1)) :}

because{sin7ϕ1cos2ϕ1whichimpliesthatsin7ϕ+cos2ϕ2.Hence,sin7ϕ+cos2ϕ=2ifandonlyif{sin7ϕ=1cos2ϕ=1

Answered by 1549442205 last updated on 21/Jun/20

one other way:  sin7φ+cos2φ=−2⇔(1+cos((π/2)−7φ))+(1+cos2φ)=0  ⇔2cos^2 (((π/2)−7φ)/2)+2cos^2 φ=0  ⇔ { ((cos(((π/2)−7φ)/2)=0 (1) )),((cosφ=0 (2))) :}⇔ { (((((π/2)−7φ)/2)=(π/2)+m.π)),((φ=(π/2)+n.π)) :}  ⇔ { ((φ=((((−π)/2)+2m.π)/7))),((φ=(π/2)+n.π)) :}⇔((((−π)/2)+2m.π)/7)=(π/2)+nπ  2m=4+7n⇔m=3n+(n/2)+2⇒ { ((n=2k)),((m=7k+2)) :}  Thus,𝛗=(𝛑/2)+2k𝛑  is roots of the problem

oneotherway:sin7ϕ+cos2ϕ=2(1+cos(π27ϕ))+(1+cos2ϕ)=02cos2π27ϕ2+2cos2ϕ=0{cosπ27ϕ2=0(1)cosϕ=0(2){π27ϕ2=π2+m.πϕ=π2+n.π{ϕ=π2+2m.π7ϕ=π2+n.ππ2+2m.π7=π2+nπ2m=4+7nm=3n+n2+2{n=2km=7k+2Thus,ϕ=π2+2kπisrootsoftheproblem

Terms of Service

Privacy Policy

Contact: info@tinkutara.com