Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 99465 by mathmax by abdo last updated on 21/Jun/20

calculate I =∫ cos^2 x sh(2x)dx and J =∫ sin^2 x ch(2x)dx

calculateI=cos2xsh(2x)dxandJ=sin2xch(2x)dx

Answered by mathmax by abdo last updated on 22/Jun/20

I =∫ cos^2 x sh(2x)dx ⇒I =(1/2)∫  (1+cos(2x))sh(2x)dx  =(1/2)∫ sh(2x)dx +(1/2)∫ cos(2x)sh(2x)dx  ∫ sh(2x)dx =(1/2)ch(2x)+c_1   ∫ cos(2x)sh(2x)dx =Re(∫  e^(2ix) ×((e^(2ix) −e^(−2ix) )/2) dx)  ∫  ((e^(4ix) −1)/2) dx =−(x/2) +(1/(8i)) e^(4ix)  =−(x/2)−(i/8)(cos(4x)+isin(4x) ⇒  Re(....) =−(x/2)+(1/8)sin(4x) ⇒ I =(1/2)ch(2x)−(x/4) +(1/(16))sin(4x)

I=cos2xsh(2x)dxI=12(1+cos(2x))sh(2x)dx=12sh(2x)dx+12cos(2x)sh(2x)dxsh(2x)dx=12ch(2x)+c1cos(2x)sh(2x)dx=Re(e2ix×e2ixe2ix2dx)e4ix12dx=x2+18ie4ix=x2i8(cos(4x)+isin(4x)Re(....)=x2+18sin(4x)I=12ch(2x)x4+116sin(4x)

Answered by abdomathmax last updated on 22/Jun/20

J =∫ sin^2 x ch(2x)dx ⇒J =(1/2)∫(1−cos(2x))ch(2x)dx  =(1/2)∫ ch(2x)dx−(1/2) ∫ cos(2x)ch(2x)dx we have  ∫ ch(2x)dx =(1/2)sh(2x) +c_1   ∫ cos(2x)ch(2x)dx =(1/2)Re(∫ e^(2ix) (e^(2ix) +e^(−2ix) )dx)  and ∫  (e^(4ix)  +1)dx =x+(1/(4i)) e^(4ix)   =x−(i/4)(cos(4x)+isin(4x))  ⇒(1/2)Re(...)  =(x/2) +(1/8)sin(4x) ⇒  J =(1/4)sh(2x)−(x/5)−(1/(16))sin(4x) +c

J=sin2xch(2x)dxJ=12(1cos(2x))ch(2x)dx=12ch(2x)dx12cos(2x)ch(2x)dxwehavech(2x)dx=12sh(2x)+c1cos(2x)ch(2x)dx=12Re(e2ix(e2ix+e2ix)dx)and(e4ix+1)dx=x+14ie4ix=xi4(cos(4x)+isin(4x))12Re(...)=x2+18sin(4x)J=14sh(2x)x5116sin(4x)+c

Commented by abdomathmax last updated on 22/Jun/20

J =(1/4)sh(2x)−(x/4)−(1/(16))sin(4x) +c

J=14sh(2x)x4116sin(4x)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com