Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99504 by pticantor last updated on 21/Jun/20

Answered by Ar Brandon last updated on 21/Jun/20

Posons x=(√2)tanθ⇒dx=(√2)sec^2 θdθ  I=∫(((√2)sec^2 θ)/((2tan^2 θ+2)^2 ))dθ=(1/(2(√2)))∫(1/(sec^2 θ))dθ=(1/(2(√2)))∫cos^2 θdθ     =(1/(4(√2)))∫{1+cos(2θ)}dθ=(θ/(4(√2)))+((sin(2θ))/(8(√2)))+C

Posonsx=2tanθdx=2sec2θdθI=2sec2θ(2tan2θ+2)2dθ=1221sec2θdθ=122cos2θdθ=142{1+cos(2θ)}dθ=θ42+sin(2θ)82+C

Answered by Dwaipayan Shikari last updated on 21/Jun/20

Suppose,x=(√2)tanα  so,(dx/dα)=(√2)sec^2 α  ∫(((√2)sec^2 αdα)/(4(tan^2 α+1)^2 ))=(1/(2(√2)))∫cos^2 αdα=(1/(4(√2)))∫(1+cos2α)dα  =(α/(4(√2)))+((sin2α)/(8(√2)))+constant  =((tan^(−1) (x/(√2)))/(4(√2)))+((sin(2tan^(−1) (x/(√2))))/(8(√2)))+constant

Suppose,x=2tanαso,dxdα=2sec2α2sec2αdα4(tan2α+1)2=122cos2αdα=142(1+cos2α)dα=α42+sin2α82+constant=tan1x242+sin(2tan1x2)82+constant

Answered by mathmax by abdo last updated on 21/Jun/20

A =∫  (dx/((x^2  +2)^2 ))   changement x =(√2)tanθ give A =∫  (((√2)(1+tan^2 θ)dθ)/(4(1+tan^2 θ)^2 ))  =((√2)/4) ∫ (dθ/(1+tan^2 θ)) =((√2)/4) ∫cos^2 θ dθ =((√2)/4) ∫((1+cos(2θ))/2)dθ  =((√2)/8){ θ  +(1/2)sin(2θ)}+c =((√2)/8) arctan((x/(√2))) +((√2)/8)sinθ cosθ+c  but  sinθ cosθ =tanθ ×cos^2 θ =(x/(√2))((1/(1+tan^2 θ))) =(x/(√2))((1/(1+(x^2 /2)))) =((2x)/((√2)(x^2  +2))) ⇒  A =((√2)/8) arctan((x/(√2)))+((√2)/8)×((2x)/((√2)(x^2  +2)))+c ⇒A =((√2)/8) arctan((x/(√2)))+(x/(4(x^2  +2)))+c

A=dx(x2+2)2changementx=2tanθgiveA=2(1+tan2θ)dθ4(1+tan2θ)2=24dθ1+tan2θ=24cos2θdθ=241+cos(2θ)2dθ=28{θ+12sin(2θ)}+c=28arctan(x2)+28sinθcosθ+cbutsinθcosθ=tanθ×cos2θ=x2(11+tan2θ)=x2(11+x22)=2x2(x2+2)A=28arctan(x2)+28×2x2(x2+2)+cA=28arctan(x2)+x4(x2+2)+c

Answered by maths mind last updated on 22/Jun/20

f(t)=∫(dx/(x^2 +t^2 ))=(1/t)tan^(−1) ((x/t))+c  f′(t)=∫((−2tdx)/((x^2 +t^2 )^2 ))=−(1/t^2 )tan^− ((x/t))−(x/t).(1/(x^2 +t^2 ))+c  t=(√2)⇒∫(dx/((x^2 +2)^2 ))=(1/(4(√2)))tan^− ((x/(√2)))+(x/(4(x^2 +2)))+d

f(t)=dxx2+t2=1ttan1(xt)+cf(t)=2tdx(x2+t2)2=1t2tan(xt)xt.1x2+t2+ct=2dx(x2+2)2=142tan(x2)+x4(x2+2)+d

Terms of Service

Privacy Policy

Contact: info@tinkutara.com