Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 99505 by bemath last updated on 21/Jun/20

Commented by Dwaipayan Shikari last updated on 21/Jun/20

Ans:1

$${Ans}:\mathrm{1} \\ $$

Commented by Dwaipayan Shikari last updated on 21/Jun/20

=e^(lim_(x→(π/2)) (sinx)(1−tan((x/2))))   =e^(lim_(x→(π/2)) (sinx−2sin^2 ((x/2))))   =e^((1−1)) =e^0 =1

$$={e}^{{li}\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {{m}}\left({sinx}\right)\left(\mathrm{1}−{tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)} \\ $$$$={e}^{{li}\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {{m}}\left({sinx}−\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)} \\ $$$$={e}^{\left(\mathrm{1}−\mathrm{1}\right)} ={e}^{\mathrm{0}} =\mathrm{1} \\ $$

Answered by john santu last updated on 22/Jun/20

let tan ((x/2)) = t  lim_(t→1)  (((1−2t+t^2 )/(1+t^2 ))) ^(t−1)  = e^(lim_(t→1)  ln (((1−2t+t^2 )/(1+t^2 )))^(t−1) )   e^(lim_(t→1)  ((ln(((1−2t+t^2 )/(1+t^2 ))))/(t−1))) = e^(lim_(t→1)  (((((1+t^2 )/((t−1)^2 )))((((2t−2)(1+t^2 )−2t(t−1)^2 )/((1+t^2 )^2 ))))/1))   = e^0  = 1

$$\mathrm{let}\:\mathrm{tan}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\:=\:\mathrm{t} \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}−\mathrm{2t}+\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)\overset{\mathrm{t}−\mathrm{1}} {\:}\:=\:\mathrm{e}^{\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{ln}\:\left(\frac{\mathrm{1}−\mathrm{2t}+\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)^{\mathrm{t}−\mathrm{1}} } \\ $$$$\mathrm{e}^{\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\frac{\mathrm{1}−\mathrm{2t}+\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)}{\mathrm{t}−\mathrm{1}}} =\:\mathrm{e}^{\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }\right)\left(\frac{\left(\mathrm{2t}−\mathrm{2}\right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)−\mathrm{2t}\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\right)}{\mathrm{1}}} \\ $$$$=\:\mathrm{e}^{\mathrm{0}} \:=\:\mathrm{1} \\ $$

Answered by mathmax by abdo last updated on 21/Jun/20

let f(x) =(1−sinx)^(tan((x/2)−1))  ⇒f(x) =e^((tan((x/2))−1)ln(1−sinx))   changement x =(π/2)−t  give  f(x) =e^((tan((π/4)−(t/2))−1)ln(1−cost))  =g(t)  (t→0) we have tan((π/4)−(t/2))−1 =((1−tan((t/2)))/(1+tan((t/2))))−1 =((−2tan((t/2)))/(1+tan((t/2)))) ∼((−t)/(1+(t/2)))∼−t  1−cost ∼(t^2 /2) ⇒ln(1−cost) ∼2lnt−ln(2) ⇒  g(t) ∼e^(−t(2lnt−ln2))   →1 (t→0) ⇒lim_(x→(π/2))   f(x) =1

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\left(\mathrm{1}−\mathrm{sinx}\right)^{\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{1}\right)} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{\left(\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{1}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{sinx}\right)} \\ $$$$\mathrm{changement}\:\mathrm{x}\:=\frac{\pi}{\mathrm{2}}−\mathrm{t}\:\:\mathrm{give}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{\left(\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\frac{\mathrm{t}}{\mathrm{2}}\right)−\mathrm{1}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{cost}\right)} \:=\mathrm{g}\left(\mathrm{t}\right) \\ $$$$\left(\mathrm{t}\rightarrow\mathrm{0}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\frac{\mathrm{t}}{\mathrm{2}}\right)−\mathrm{1}\:=\frac{\mathrm{1}−\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)}−\mathrm{1}\:=\frac{−\mathrm{2tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)}\:\sim\frac{−\mathrm{t}}{\mathrm{1}+\frac{\mathrm{t}}{\mathrm{2}}}\sim−\mathrm{t} \\ $$$$\mathrm{1}−\mathrm{cost}\:\sim\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{ln}\left(\mathrm{1}−\mathrm{cost}\right)\:\sim\mathrm{2lnt}−\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\mathrm{g}\left(\mathrm{t}\right)\:\sim\mathrm{e}^{−\mathrm{t}\left(\mathrm{2lnt}−\mathrm{ln2}\right)} \:\:\rightarrow\mathrm{1}\:\left(\mathrm{t}\rightarrow\mathrm{0}\right)\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com