Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99516 by 175 last updated on 21/Jun/20

Answered by mathmax by abdo last updated on 21/Jun/20

I =∫_0 ^(π/4)  (dx/(cos^4 x+sin^4 x−cos^2 xsin^2 x)) ⇒ I =∫_0 ^(π/4)  (dx/((cos^2 x+sin^2 x)^(2 ) −3cos^2 x sin^2 x))  =∫_0 ^(π/4)  (dx/(1−3((1/2)sin(2x))^2 )) =∫_0 ^(π/4)  (dx/(1−(3/4)sin^2 (2x))) =4 ∫_0 ^(π/4)  (dx/(4−3×((1−cos(4x))/2)))  =8 ∫_0 ^(π/4)  (dx/(5+3cos(4x))) =_(4x=t)    8 ∫_0 ^(π )   (dt/(4(5+3cost))) =2 ∫_0 ^π  (dt/(5+3cost))  =_(tan((t/2))=u)      2 ∫_0 ^∞   ((2du)/((1+u^2 )(5+3((1−u^2 )/(1+u^2 ))))) =4 ∫_0 ^∞    (du/(5+5u^2 +3−3u^2 ))  =4 ∫_0 ^∞   (du/(2u^2 +8)) =2 ∫_0 ^∞   (du/(u^2  +4)) =_(u=2α)    2 ∫_0 ^∞   ((2dα)/(4(1+α^2 ))) =∫_0 ^∞  (dα/(1+α^2 )) =(π/2) ⇒  I =(π/2)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{4}} \mathrm{x}+\mathrm{sin}^{\mathrm{4}} \mathrm{x}−\mathrm{cos}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{x}}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\left(\mathrm{cos}^{\mathrm{2}} \mathrm{x}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}\:} −\mathrm{3cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2x}\right)\right)^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)}\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{4}−\mathrm{3}×\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{4x}\right)}{\mathrm{2}}} \\ $$$$=\mathrm{8}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{5}+\mathrm{3cos}\left(\mathrm{4x}\right)}\:=_{\mathrm{4x}=\mathrm{t}} \:\:\:\mathrm{8}\:\int_{\mathrm{0}} ^{\pi\:} \:\:\frac{\mathrm{dt}}{\mathrm{4}\left(\mathrm{5}+\mathrm{3cost}\right)}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dt}}{\mathrm{5}+\mathrm{3cost}} \\ $$$$=_{\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)=\mathrm{u}} \:\:\:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2du}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\left(\mathrm{5}+\mathrm{3}\frac{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\right)}\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{du}}{\mathrm{5}+\mathrm{5u}^{\mathrm{2}} +\mathrm{3}−\mathrm{3u}^{\mathrm{2}} } \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{du}}{\mathrm{2u}^{\mathrm{2}} +\mathrm{8}}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} \:+\mathrm{4}}\:=_{\mathrm{u}=\mathrm{2}\alpha} \:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2d}\alpha}{\mathrm{4}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{I}\:=\frac{\pi}{\mathrm{2}} \\ $$

Commented by 175 last updated on 21/Jun/20

thank you sir

Commented by mathmax by abdo last updated on 21/Jun/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com