Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 99568 by Dwaipayan Shikari last updated on 22/Jun/20

Find the value of  (√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))...∞     by cos function

$${Find}\:{the}\:{value}\:{of}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}...\infty\:\:\:\:\:{by}\:{cos}\:{function} \\ $$

Commented by bemath last updated on 22/Jun/20

x =(√(2+(√(2+(√(2+(√(2+(√(...))))))))))  x^2  = 2+x   x^2 −x−2 = 0  (x−2)(x+1) = 0    { ((x=2 solution)),((x=−1 rejected )) :}

$${x}\:=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{...}}}}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{2}+{x}\: \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{2}\:=\:\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)\:=\:\mathrm{0}\: \\ $$$$\begin{cases}{{x}=\mathrm{2}\:{solution}}\\{{x}=−\mathrm{1}\:{rejected}\:}\end{cases} \\ $$

Commented by Dwaipayan Shikari last updated on 22/Jun/20

Thank you sir .Can you prove it using′ cos′function?

$${Thank}\:{you}\:{sir}\:.{Can}\:{you}\:{prove}\:{it}\:{using}'\:{cos}'{function}? \\ $$

Commented by Dwaipayan Shikari last updated on 22/Jun/20

1+cos(π/4)=2cos^2 (π/8)  (√((1/2)(1+(1/(√2)))))=cos(π/8)=cos(π/2^3 )=(1/2)(√(2+(√2)))  As we procceed  (√((1/2)(1+(1/2)(√(2+(√2))))))=cos(π/(16)) =cos(π/2^4 )    =(1/2)(√(2+(√(2+(√2)))))  so (1/2)(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√2)))))))))))))...n terms  =cos(π/2^(n+1) )   _(n→∞) lim cos(π/2^(n+1) )=cos(0)=1  So  (1/2)(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))))...∞ =1  so  (√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))))))....∞  =2

$$\mathrm{1}+{cos}\frac{\pi}{\mathrm{4}}=\mathrm{2}{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{8}} \\ $$$$\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)}={cos}\frac{\pi}{\mathrm{8}}={cos}\frac{\pi}{\mathrm{2}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$${As}\:{we}\:{procceed}\:\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}\right)}={cos}\frac{\pi}{\mathrm{16}}\:={cos}\frac{\pi}{\mathrm{2}^{\mathrm{4}} }\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$${so}\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}}}}...{n}\:{terms}\:\:={cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$\underset{{n}\rightarrow\infty} {\:}{lim}\:{cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }={cos}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${So}\:\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}}...\infty\:=\mathrm{1} \\ $$$${so}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}}}....\infty\:\:=\mathrm{2} \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 22/Jun/20

Sir, i have found this way while experimenting.Is it true?

$${Sir},\:{i}\:{have}\:{found}\:{this}\:{way}\:{while}\:{experimenting}.{Is}\:{it}\:{true}? \\ $$

Answered by mahdi last updated on 21/Jun/20

(√(2+(√(2+(√(2+...))))))=A⇒  (√(2+A))=A⇒A^2 =A+2⇒A^2 −A−2=0  ⇒A=((1±(√5))/2)  ⇒^(A>0)   A=((1+(√5))/2)

$$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+...}}}=\mathrm{A}\Rightarrow \\ $$$$\sqrt{\mathrm{2}+\mathrm{A}}=\mathrm{A}\Rightarrow\mathrm{A}^{\mathrm{2}} =\mathrm{A}+\mathrm{2}\Rightarrow\mathrm{A}^{\mathrm{2}} −\mathrm{A}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{A}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\overset{\mathrm{A}>\mathrm{0}} {\Rightarrow}\:\:\mathrm{A}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com