Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99578 by mathmax by abdo last updated on 21/Jun/20

1)calculate  U_n =∫_0 ^∞  e^(−nx^4 ) dx  and determine lim_(n→+∞)  n^4  U_n   2) find nature of the serie Σ U_n

$$\left.\mathrm{1}\right)\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nx}^{\mathrm{4}} } \mathrm{dx}\:\:\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{n}^{\mathrm{4}} \:\mathrm{U}_{\mathrm{n}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$

Answered by maths mind last updated on 22/Jun/20

U_n   let t=nx^4 ⇒dx=(1/n^(1/4) ).(t^(−(3/4)) /4)dt   =(1/(4n^(1/4) ))∫_0 ^(+∞) e^(−t) t^(−(3/4)) dt=((Γ((1/4)))/(4n^(1/4) ))  ⇒n^4 U_n →+∞  ΣU_n  diverge Σ(1/n^a ),a≤1

$${U}_{{n}} \\ $$$${let}\:{t}={nx}^{\mathrm{4}} \Rightarrow{dx}=\frac{\mathrm{1}}{{n}^{\frac{\mathrm{1}}{\mathrm{4}}} }.\frac{{t}^{−\frac{\mathrm{3}}{\mathrm{4}}} }{\mathrm{4}}{dt}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{n}^{\frac{\mathrm{1}}{\mathrm{4}}} }\int_{\mathrm{0}} ^{+\infty} {e}^{−{t}} {t}^{−\frac{\mathrm{3}}{\mathrm{4}}} {dt}=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}{n}^{\frac{\mathrm{1}}{\mathrm{4}}} } \\ $$$$\Rightarrow{n}^{\mathrm{4}} {U}_{{n}} \rightarrow+\infty \\ $$$$\Sigma{U}_{{n}} \:{diverge}\:\Sigma\frac{\mathrm{1}}{{n}^{{a}} },{a}\leqslant\mathrm{1} \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 22/Jun/20

1) U_n =∫_0 ^∞  e^(−n x^4 ) dx  we do the changement nx^4  =t ⇒x^4  =(t/n) ⇒  x =(1/n^(1/4) )t^(1/4)  ⇒ U_n =(1/((^4 (√n))))∫_0 ^∞   e^(−t)  (1/4) t^((1/4)−1)  dt =(1/(4(^4 (√n))))×Γ((1/4))  U_n =(n^(−(1/4)) /4) Γ((1/4)) ⇒n^4  U_n =(n^((15)/4) /4)Γ((1/4))→+∞ (n→∞)  2)Σ_(n=1) ^∞  U_n  =(1/4)Γ((1/4))Σ_(n=1) ^∞  (1/n^(1/4) )  and Σ_(n=1) ^∞  (1/n^(1/4) ) have tbe same nature of  ∫_1 ^(+∞)  (dt/t^(1/4) ) =∫_1 ^(+∞)  t^(−(1/4))  dt =[(1/(−(1/4)+1)) t^(−(1/4)+1) ]_0 ^(+∞)  =[(4/3) t^(3/4) ]_0 ^∞  =+∞ ⇒  Σ u_n  is divergent...

$$\left.\mathrm{1}\right)\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{n}\:\mathrm{x}^{\mathrm{4}} } \mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{nx}^{\mathrm{4}} \:=\mathrm{t}\:\Rightarrow\mathrm{x}^{\mathrm{4}} \:=\frac{\mathrm{t}}{\mathrm{n}}\:\Rightarrow \\ $$$$\mathrm{x}\:=\frac{\mathrm{1}}{\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{4}}} }\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\Rightarrow\:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}}{\left(^{\mathrm{4}} \sqrt{\mathrm{n}}\right)}\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\mathrm{t}} \:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{4}\left(^{\mathrm{4}} \sqrt{\mathrm{n}}\right)}×\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{n}^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\mathrm{4}}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\:\Rightarrow\mathrm{n}^{\mathrm{4}} \:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{n}^{\frac{\mathrm{15}}{\mathrm{4}}} }{\mathrm{4}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\rightarrow+\infty\:\left(\mathrm{n}\rightarrow\infty\right) \\ $$$$\left.\mathrm{2}\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{U}_{\mathrm{n}} \:=\frac{\mathrm{1}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:\:\mathrm{and}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:\mathrm{have}\:\mathrm{tbe}\:\mathrm{same}\:\mathrm{nature}\:\mathrm{of} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dt}}{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:=\int_{\mathrm{1}} ^{+\infty} \:\mathrm{t}^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\mathrm{dt}\:=\left[\frac{\mathrm{1}}{−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}}\:\mathrm{t}^{−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}} \right]_{\mathrm{0}} ^{+\infty} \:=\left[\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{t}^{\frac{\mathrm{3}}{\mathrm{4}}} \right]_{\mathrm{0}} ^{\infty} \:=+\infty\:\Rightarrow \\ $$$$\Sigma\:\mathrm{u}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{divergent}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com