Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 99621 by student work last updated on 22/Jun/20

6^x =x^(5       ) x=?       help me

$$\mathrm{6}^{\mathrm{x}} =\mathrm{x}^{\mathrm{5}\:\:\:\:\:\:\:} \mathrm{x}=?\:\:\:\:\:\:\:\mathrm{help}\:\mathrm{me} \\ $$

Commented by Dwaipayan Shikari last updated on 22/Jun/20

(x/(logx))=(5/(log6))  x^(5/x) =6  x=2.199(approx)

$$\frac{{x}}{{logx}}=\frac{\mathrm{5}}{{log}\mathrm{6}} \\ $$$${x}^{\frac{\mathrm{5}}{{x}}} =\mathrm{6} \\ $$$${x}=\mathrm{2}.\mathrm{199}\left({approx}\right) \\ $$

Answered by MWSuSon last updated on 22/Jun/20

ln6^x =lnx^5   ⇔xln6=5lnx  ⇔(1/5)ln6=x^(−1) lnx  ⇔(1/5)ln6=e^(lnx^(−1) ) lnx  ⇔−(1/5)ln6=−lnxe^(−lnx)   W_0 (−(1/5)ln6)=W_0 (−lnxe^(−lnx) )  since −(1/5)ln6>−(1/e) we use both p−  rincipal and −1 branch.  −lnx=W_p (−(1/5)ln6)  lnx=−W_p (−(1/5)ln6)  x=e^(−W_p (−(1/5)ln6))   x=2.1991  Looking at the −1 branch  x=^(−W_(−1) (−(1/5)ln6))   x=3.4795  ⇒for 6^x =x^5   x= { ((2.1991,    W_p )),((3.4795,    W_(−1) )) :}  W_0  is the lambert W function also  called product log.

$$\mathrm{ln6}^{\mathrm{x}} =\mathrm{lnx}^{\mathrm{5}} \\ $$$$\Leftrightarrow\mathrm{xln6}=\mathrm{5lnx} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}=\mathrm{x}^{−\mathrm{1}} \mathrm{lnx} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}=\mathrm{e}^{\mathrm{lnx}^{−\mathrm{1}} } \mathrm{lnx} \\ $$$$\Leftrightarrow−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}=−\mathrm{lnxe}^{−\mathrm{lnx}} \\ $$$$\mathrm{W}_{\mathrm{0}} \left(−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}\right)=\mathrm{W}_{\mathrm{0}} \left(−\mathrm{lnxe}^{−\mathrm{lnx}} \right) \\ $$$$\mathrm{since}\:−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}>−\frac{\mathrm{1}}{\mathrm{e}}\:\mathrm{we}\:\mathrm{use}\:\mathrm{both}\:\mathrm{p}− \\ $$$$\mathrm{rincipal}\:\mathrm{and}\:−\mathrm{1}\:\mathrm{branch}. \\ $$$$−\mathrm{lnx}=\mathrm{W}_{\mathrm{p}} \left(−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}\right) \\ $$$$\mathrm{lnx}=−\mathrm{W}_{\mathrm{p}} \left(−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}\right) \\ $$$$\mathrm{x}=\mathrm{e}^{−\mathrm{W}_{\mathrm{p}} \left(−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}\right)} \\ $$$$\mathrm{x}=\mathrm{2}.\mathrm{1991} \\ $$$$\mathrm{Looking}\:\mathrm{at}\:\mathrm{the}\:−\mathrm{1}\:\mathrm{branch} \\ $$$$\mathrm{x}=^{−\mathrm{W}_{−\mathrm{1}} \left(−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln6}\right)} \\ $$$$\mathrm{x}=\mathrm{3}.\mathrm{4795} \\ $$$$\Rightarrow\mathrm{for}\:\mathrm{6}^{\mathrm{x}} =\mathrm{x}^{\mathrm{5}} \\ $$$$\mathrm{x}=\begin{cases}{\mathrm{2}.\mathrm{1991},\:\:\:\:\mathrm{W}_{\mathrm{p}} }\\{\mathrm{3}.\mathrm{4795},\:\:\:\:\mathrm{W}_{−\mathrm{1}} }\end{cases} \\ $$$$\mathrm{W}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{lambert}\:\mathrm{W}\:\mathrm{function}\:\mathrm{also} \\ $$$$\mathrm{called}\:\mathrm{product}\:\mathrm{log}. \\ $$

Answered by mr W last updated on 22/Jun/20

x=6^(x/5)   1=xe^(−((xln 6)/5))   −((ln 6)/5)=−((xln 6)/5)e^(−((xln 6)/5))   −((xln 6)/5)=W(−((ln 6)/5))  ⇒x=−(5/(ln 6))W(−((ln 6)/5))= { ((2.1991)),((3.4795)) :}

$${x}=\mathrm{6}^{\frac{{x}}{\mathrm{5}}} \\ $$$$\mathrm{1}={xe}^{−\frac{{x}\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}} \\ $$$$−\frac{\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}=−\frac{{x}\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}{e}^{−\frac{{x}\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}} \\ $$$$−\frac{{x}\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}={W}\left(−\frac{\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}\right) \\ $$$$\Rightarrow{x}=−\frac{\mathrm{5}}{\mathrm{ln}\:\mathrm{6}}{W}\left(−\frac{\mathrm{ln}\:\mathrm{6}}{\mathrm{5}}\right)=\begin{cases}{\mathrm{2}.\mathrm{1991}}\\{\mathrm{3}.\mathrm{4795}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com