Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 99623 by hardylanes last updated on 22/Jun/20

obtain the modulus and arguement of  (((1−i)^4 )/((2+2(√(3i)^3 ))))

$${obtain}\:{the}\:{modulus}\:{and}\:{arguement}\:{of} \\ $$$$\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{4}} }{\left(\mathrm{2}+\mathrm{2}\sqrt{\left.\mathrm{3}{i}\right)^{\mathrm{3}} }\right.} \\ $$

Commented by Dwaipayan Shikari last updated on 22/Jun/20

=(((1−i)^(2.2) )/(4^3 ((1/2)+((√3)/2)i)^3 ))=(((−2i)^2 )/(64e^(((πi)/3).3) ))=((−4)/(64 e^(πi) ))=((−4)/(−64))=(1/(16))+0.i=z  mod (z) is (1/(16))  arg(z) is 0   [As α=tan^(−1) ((0/(1/(16))))=0  ]{And  e^(πi) =−1}

$$=\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{2}.\mathrm{2}} }{\mathrm{4}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)^{\mathrm{3}} }=\frac{\left(−\mathrm{2}{i}\right)^{\mathrm{2}} }{\mathrm{64}{e}^{\frac{\pi{i}}{\mathrm{3}}.\mathrm{3}} }=\frac{−\mathrm{4}}{\mathrm{64}\:{e}^{\pi{i}} }=\frac{−\mathrm{4}}{−\mathrm{64}}=\frac{\mathrm{1}}{\mathrm{16}}+\mathrm{0}.{i}={z} \\ $$$${mod}\:\left({z}\right)\:{is}\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$$${arg}\left({z}\right)\:{is}\:\mathrm{0}\:\:\:\left[{As}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{0}}{\frac{\mathrm{1}}{\mathrm{16}}}\right)=\mathrm{0}\:\:\right]\left\{{And}\:\:{e}^{\pi{i}} =−\mathrm{1}\right\} \\ $$

Answered by Rio Michael last updated on 22/Jun/20

let z = (((1−i)^4 )/((2 + 2(√3) i)^3 )) = ((((√2) e^(i((7π)/4)) )^4 )/((4e^(i(π/3)) )^3 )) = ((4e^(7πi) )/(4^3 e^(πi) ))  ⇒ ∣z∣ = (4/4^3 ) = (1/4^2 ) =  (1/(16))   arg z = 7π−π = 6π = 3(2π)  aco−terminal angle = 0  ⇒ arg z = 0

$$\mathrm{let}\:{z}\:=\:\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{4}} }{\left(\mathrm{2}\:+\:\mathrm{2}\sqrt{\mathrm{3}}\:{i}\right)^{\mathrm{3}} }\:=\:\frac{\left(\sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{7}\pi}{\mathrm{4}}} \right)^{\mathrm{4}} }{\left(\mathrm{4}{e}^{{i}\frac{\pi}{\mathrm{3}}} \right)^{\mathrm{3}} }\:=\:\frac{\mathrm{4}{e}^{\mathrm{7}\pi{i}} }{\mathrm{4}^{\mathrm{3}} {e}^{\pi{i}} } \\ $$$$\Rightarrow\:\mid{z}\mid\:=\:\frac{\mathrm{4}}{\mathrm{4}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }\:=\:\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\:\mathrm{arg}\:{z}\:=\:\mathrm{7}\pi−\pi\:=\:\mathrm{6}\pi\:=\:\mathrm{3}\left(\mathrm{2}\pi\right) \\ $$$$\mathrm{aco}−\mathrm{terminal}\:\mathrm{angle}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{arg}\:{z}\:=\:\mathrm{0} \\ $$

Commented by mathmax by abdo last updated on 23/Jun/20

z =(((1−i)^4 )/((2+2(√3)i)^3 ))  we have 1−i =(√2)e^(−((iπ)/4))  ⇒(1−i)^4  =4 e^(−iπ)    2+2(√3)i =2(1+(√3)i) =4((1/2)+((i(√3))/2)) =4e^((iπ)/3)  ⇒(2+2(√3)i)^3  =4^3  e^((4iπ)/3)  ⇒  z =(1/(16)) e^(−iπ−((4iπ)/3))  =(1/(16)) e^(−i(π+((4π)/3)))  =(1/(16)) e^(−i(((7π)/3)))  =(1/(16)) e^(−i(2π +(π/3)))  =(1/(16)) e^(−((iπ)/3))  ⇒  ∣z∣ =(1/(16)) and argz ≡−(π/3)[2π]

$$\mathrm{z}\:=\frac{\left(\mathrm{1}−\mathrm{i}\right)^{\mathrm{4}} }{\left(\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}\right)^{\mathrm{3}} }\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{1}−\mathrm{i}\:=\sqrt{\mathrm{2}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \:\Rightarrow\left(\mathrm{1}−\mathrm{i}\right)^{\mathrm{4}} \:=\mathrm{4}\:\mathrm{e}^{−\mathrm{i}\pi} \: \\ $$$$\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}\:=\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}\right)\:=\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:=\mathrm{4e}^{\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow\left(\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}\right)^{\mathrm{3}} \:=\mathrm{4}^{\mathrm{3}} \:\mathrm{e}^{\frac{\mathrm{4i}\pi}{\mathrm{3}}} \:\Rightarrow \\ $$$$\mathrm{z}\:=\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{e}^{−\mathrm{i}\pi−\frac{\mathrm{4i}\pi}{\mathrm{3}}} \:=\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{e}^{−\mathrm{i}\left(\pi+\frac{\mathrm{4}\pi}{\mathrm{3}}\right)} \:=\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{e}^{−\mathrm{i}\left(\frac{\mathrm{7}\pi}{\mathrm{3}}\right)} \:=\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{e}^{−\mathrm{i}\left(\mathrm{2}\pi\:+\frac{\pi}{\mathrm{3}}\right)} \:=\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow \\ $$$$\mid\mathrm{z}\mid\:=\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{and}\:\mathrm{argz}\:\equiv−\frac{\pi}{\mathrm{3}}\left[\mathrm{2}\pi\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com