Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 99685 by Ar Brandon last updated on 22/Jun/20

Find the limits when n goes to infinty of the following  summation series;  a\(1/n^2 )Σ_(k=1) ^n E(kx),  x∈R  b\Σ_(k=0) ^n  ((n),(k) )^(−1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{when}\:\mathrm{n}\:\mathrm{goes}\:\mathrm{to}\:\mathrm{infinty}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{summation}\:\mathrm{series}; \\ $$$$\mathrm{a}\backslash\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{E}\left(\mathrm{kx}\right),\:\:\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{b}\backslash\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}^{−\mathrm{1}} \\ $$

Commented by Rasheed.Sindhi last updated on 22/Jun/20

To Tinku tara, the developer  Sir,  I don′t receive noticication at the  moment.

$${To}\:\mathcal{T}{inku}\:{tara},\:{the}\:{developer} \\ $$$${Sir}, \\ $$$${I}\:{don}'{t}\:{receive}\:{noticication}\:{at}\:{the} \\ $$$${moment}. \\ $$

Commented by Tinku Tara last updated on 23/Jun/20

Are u logged on to more than one  device? logout and login again  from the device to receive  notification again.

$$\mathrm{Are}\:\mathrm{u}\:\mathrm{logged}\:\mathrm{on}\:\mathrm{to}\:\mathrm{more}\:\mathrm{than}\:\mathrm{one} \\ $$$$\mathrm{device}?\:\mathrm{logout}\:\mathrm{and}\:\mathrm{login}\:\mathrm{again} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{device}\:\mathrm{to}\:\mathrm{receive} \\ $$$$\mathrm{notification}\:\mathrm{again}. \\ $$

Commented by Rasheed.Sindhi last updated on 23/Jun/20

Thanks sir  After this complaint I received  the notification of your reply.  It seems that the problem was  temporary....I used only one  device.

$${Thanks}\:{sir} \\ $$$${After}\:{this}\:{complaint}\:{I}\:{received} \\ $$$${the}\:{notification}\:{of}\:{your}\:{reply}. \\ $$$${It}\:{seems}\:{that}\:{the}\:{problem}\:{was} \\ $$$${temporary}....{I}\:{used}\:{only}\:{one} \\ $$$${device}. \\ $$

Answered by maths mind last updated on 22/Jun/20

kx−1≤E(kx)≤kx        ⇒  Σ_(k=1) ^n (kx−1)≤Σ_(k=1) ^n E(kx)≤Σ_(k=1) ^n kx  ⇔  (n/2)(n+1)x−n≤Σ_(k=1) ^n E(kx)≤(x/2)n(n+1)  ⇒(x/2)+(x/(2n))−(1/n)≤(1/n^2 )E(kx)≤(x/2)(1+(1/n))

$${kx}−\mathrm{1}\leqslant{E}\left({kx}\right)\leqslant{kx} \\ $$$$\:\:\:\:\:\:\Rightarrow \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({kx}−\mathrm{1}\right)\leqslant\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left({kx}\right)\leqslant\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kx} \\ $$$$\Leftrightarrow \\ $$$$\frac{{n}}{\mathrm{2}}\left({n}+\mathrm{1}\right){x}−{n}\leqslant\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left({kx}\right)\leqslant\frac{{x}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right) \\ $$$$\Rightarrow\frac{{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{{n}}\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }{E}\left({kx}\right)\leqslant\frac{{x}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$

Commented by Ar Brandon last updated on 22/Jun/20

Thanks ��

Answered by maths mind last updated on 22/Jun/20

lim_(n→ ∞) Σ_(k=0) ^n  ((n),(k) )^−    ?

$$\underset{{n}\rightarrow\:\infty} {\mathrm{lim}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{−} \:\:\:? \\ $$

Commented by Ar Brandon last updated on 22/Jun/20

I think it′s   ^n C_k

$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{k}} \: \\ $$

Answered by mathmax by abdo last updated on 22/Jun/20

a)  S_n =(1/n^2 ) Σ_(k=1) ^n  [kx]  we have   [kx] ≤kx<[kx]+1 ⇒kx−1<[kx]≤kx   ⇒Σ_(k=1) ^n (kx−1)<Σ_(k=1) ^n  [kx]≤Σ_(k=1) ^n (kx) ⇒((xn(n+1))/2)−n<Σ_(k=1) ^n  [kx]≤((xn(n+1))/2)  ((n(n+1))/(2n^2 ))x−(1/n)<(1/n^2 )Σ_(k=1) ^n [kx]≤((n(n+1))/(2n))x  we passe to limit we get  lim_(n→+∞) S_n =(x/2)

$$\left.\mathrm{a}\right)\:\:\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\left[\mathrm{kx}\right]\:\:\mathrm{we}\:\mathrm{have}\:\:\:\left[\mathrm{kx}\right]\:\leqslant\mathrm{kx}<\left[\mathrm{kx}\right]+\mathrm{1}\:\Rightarrow\mathrm{kx}−\mathrm{1}<\left[\mathrm{kx}\right]\leqslant\mathrm{kx} \\ $$$$\:\Rightarrow\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{kx}−\mathrm{1}\right)<\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\left[\mathrm{kx}\right]\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{kx}\right)\:\Rightarrow\frac{\mathrm{xn}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}−\mathrm{n}<\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\left[\mathrm{kx}\right]\leqslant\frac{\mathrm{xn}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2n}^{\mathrm{2}} }\mathrm{x}−\frac{\mathrm{1}}{\mathrm{n}}<\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left[\mathrm{kx}\right]\leqslant\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2n}}\mathrm{x}\:\:\mathrm{we}\:\mathrm{passe}\:\mathrm{to}\:\mathrm{limit}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{S}_{\mathrm{n}} =\frac{\mathrm{x}}{\mathrm{2}} \\ $$

Commented by Ar Brandon last updated on 22/Jun/20

Thank you Sir ��

Commented by mathmax by abdo last updated on 23/Jun/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com